2. Navigationsebene – People

Thomas Speck: Research

Collective Behavior of Self-propelled Particles

Dynamical collective behavior observed in, e.g., schools of fish and flocks of birds can often be described with simple models of so-called self-propelled particles. Even complex behavior can be reproduced by simple rules that are followed by all individuals (e.g., follow your neighbors but do not bump into them). On the microscale, both bacteria and colloidal particles have emerged as model systems to study a wealth of different phenomena such as swirling, swarming, and turbulence.
We are especially interested in the novel collective properties of colloidal Janus particles that are propelled by diffusio-phoresis or similar means, which have been realized experimentally very recently. Depending on the interplay of volume exclusion, hydrodynamic alignment of orientations, and attractive forces, several phenomena like living crystals and phase separation are observed.
For more information, please contact  Thomas Speck  and  Peter Virnau.


Glassy dynamics: Dynamical facilitation theory

Most liquids (including water) can be supercooled below their melting temperature and stay in the liquid state. The reason is the presence of a free energy barrier that the system has to overcome in order to crystallize. But some liquids never crystallize and at some temperature fall out of equilibrium. They form what we call a glass, a substance that macroscopically appears as a rigid solid but which microscopically is still disordered like the liquid. A comprehensive theory describing this state of matter is still missing and is one of the major challenges in condensed matter science.
For more information, please contact  Thomas Speck.

Stochastic Thermodynamics

The extraction of useable work from heat has fueled the industrial revolution of the 18th century, the scientific basis of which is provided by classical thermodynamics. Although thermodynamics can be justified by statistical arguments, it is still concerned with average values due to the vast number of degrees of freedom that comprise a macroscopic body. Quite in contrast, machines on the microscale are faced with fluctuations that are large. Our very lifes depend on such machines (e.g., proteins) to work properly. Stochastic thermodynamics is a generalization of thermodynamic notions such as work and heat to include fluctuations. In particular, the probability distributions of these quantities are not arbitrary but respect certain symmetries collectively called fluctuation theorems.
For more information, please contact  Thomas Speck.

Posted on

Thomas Speck: Teaching

Teaching in Mainz

Summer schools / Short courses

  • 12/2020 TRR 146 Winter School, Mainz: Non-equilibrium statistical physics of biomolecular machines
  • 06/2019 GSSI School "Statistical Mechanics of Active Matter”, GSSI L'Aquila (Italy): Thermodynamics of Self-Propulsion: From Single Particles to Interacting Suspensions
  • 02/2019 Winter School on Motile Active Matter, Jülich: Active Brownian Particles
  • 06/2018 IoP Advanced School in Liquids and Complex Fluids “Solutions in Spring”, Bristol (UK): Dynamical arrest
Posted on

Giovanni Settani: Research

Statistical Mechanical Modeling and Simulations of Repeat Proteins

Repeat protein domains are formed by tandem arrays of repeating structural units, constitute about 20% of the eukaryotic proteome, mediating protein-protein interactions and acting as mechano-transductors. As such they may represent the basis for the construction of mechanical nanodevices. In collaboration with experimental groups in the field, we have been working on simplified models of repeat proteins which explains both the thermodynamics and the kinetics of folding of this class of proteins. We have also been carrying out atomistic molecular dynamics (MD) simulations of several repeat protein systems to study their folding behavior and their mechanical characteristics when subjected to external pulling forces. If you are interested, please contact  Giovanni Settanni.

Transport and Properties of Blood Proteins

Transport of nutrients to peripheral tissues and healing of damaged blood vessels are among the most important functions of blood. These functions involve the action of a series of proteins some of which are found in large amounts in the blood circulation. Fibrinogen is a multiprotein complex which, when activated, aggregate to form fibrin, a net-shaped molecular formation which is fundamental for the coagulation of blood following, i.e, a wound or when an extraneous body comes into contact with blood (i.e., graft implants). Thus, adsorption of fibrinogen on material surfaces play an important role in viability of those materials for implants.

In collaboration with experimental groups in the field, we use atomistic molecular dynamics simulations to characterize the adsorption process of fibrinogen on material surfaces. Another important molecule in the blood is albumin, which mediate transport of lipids and other molecules in blood. Albumin is a multidomain protein which provides several binding sites used to bind a range of different target molecules. Target molecules (lipids, drugs, etc.) bind to albumin which act as a transporter, and are then released where needed by blood circulation. Here we use molecular dynamics simulations to study the binding modes of several lipids to Albumin and the kinetics of lipid release/uptake. If you are interested, please contact Friederike Schmid or Giovanni Settanni.

Protein and Peptide Folding

Our activity focuses on the development and application of methods for the identification of the folding transition state of peptides  and, more in general, for the complete characterization and representation of the dynamics of peptides by using atomistic molecular dynamics simulations . This research effort is based on the application of concepts like kinetic networks (figure on the left) and Markov models to the trajectory data of peptides collected by MD simulations. Results from this line of research are validated against available experimental data on the kinetics of folding of peptides (folding/unfolding rates, phi values). If you are interested, please contact  Giovanni Settanni.

Posted on

Friederike Schmid: Publications

  1. From heteropolymer stiffness distributions to effective homopolymers: A conformational analysis of intrinsically disordered proteins
    Y. Witzky, F. Schmid, A. Nikoubashman, submitted (2025).

  2. Micelle forming Linear-Dendritic block copolymers: A theoretical comparison between random hyperbranched and precise dendrimer polymer architectures
    M. Giannakou, O. Borisov, F. Schmid, submitted (2025).

  3. Sol-gel transition in heteroassociative RNA-protein solutions: A quantitative comparison of coarse-grained simulations and the Semenov-Rubinstein theory
    X. Chen, J. A. Vishnu, P. Besenius, J. König, F. Schmid, Macromolecules 58, 3331 (2025).
    doi: 10.1021/acs.macromol.4c03065

  4. Relaxation dynamics of entangled linear polymer melts via molecular dynamics simulations
    A. F. Behbahani, F. Schmid, Macromolecules 58, 767 (2025).
    doi: 10.1021/acs.macromol.4c02168

  5. Ionizable cationic lipids and helper lipids synergistically contribute to RNA packing and protection in lipid-based nanomaterials
    D. N. Zimmer, F. Schmid, G. Settanni, J. Phys. Chem. B 128, 10165 (2024).
    doi: 10.1021/acs.jpcb.4c05057

  6. Phase separation dynamics in wetting ridges of polymer surfaces swollen with oils of different viscosities
    Z. Cai, R. Badr, L. Hauer, K. Chaudhuri, A. Skabeev, F. Schmid, J. Pham, Soft Matter 20, 7300 (2024).
    doi: 10.1039/D4SM00576G

  7. Strong stretching theory of polydisperse curved brushes
    M. Giannakou, O. Borisov, F. Schmid, J. Chem. Phys. 161, 014903 (2024).
    doi: 10.1063/5.0213524

  8. Conditions for the co-existence of promoter and gene-body condensates
    A. Changiarath, J. J. Michels, R. Herrera Rodriguez, S. M. Hanson, F. Schmid, J. Padeken, L. S. Stelzl, preprint (2024).
    doi: 10.1101/2024.03.16.585180

  9. An efficient and accurate SCF algorithm for block copolymer films and brushes using adaptive discretization
    Le Qiao, M. Giannakou, F. Schmid, Polymers 26, 1228 (2024).
    doi: 10.3390/polym16091228

  10. Atomistic molecular dynamics simulations of ABA-type polymer peptide conjugates: Insights into supramolecular structures and their circular dichroism spectra
    M. L. Obenauer, J. A. Dresel, M. Schweitzer, P. Besenius, F. Schmid, Macromol. Rapid Comm. 45, 2400149 (2024).
    doi: 10.1002/marc.202400149

  11. Scalable approach to molecular motor-polymer conjugates for light-driven artificial muscles
    X. Yao, J. A. Vishnu, C. Lupfer, D. Hoenders, O. Skarsetz, W. Chen, D. Dattler, A. Perrot, W-Z. Wang, C. Gao, N. Giuseppone, F. Schmid, A. Walther, Advanced Materials 36, 2403514 (2024).
    doi: 10.1002/adma.202403514

  12. Stability and elasticity of ultrathin sphere-patterned block copolymer films
    L. Qiao, D. Vega, F. Schmid, Macromolecules 57, 4629-4634 (2024).
    doi: 10.1021/acs.macromol.4c00460

  13. Structure and dynamic evolution of interfaces between polymer solutions and gels and polymer interdiffusion: A Molecular dynamics study
    J. A. Vishnu, T. Linder, S. Seiffert, F. Schmid, Macromolecules, 57, 5545 (2024).
    doi: 10.1021/acs.macromol.4c00459

  14. Dynamics of droplets moving on lubricated polymer brushes
    R. Badr, L. Hauer, D. Vollmer, F. Schmid, Langmuir 40, 12368 (2024).
    doi: 10.1021/acs.langmuir.4c00400

  15. How boundary interactions dominate emergent driving of passive probes in active matter
    J. Shea, G. Jung, F. Schmid, Journal of Physics A 57, 235006 (2024).
    doi: 10.1088/1751-8121/ad4ad7

  16. A comprehensive approach to characterize navigation instruments for magnetic guidance in biological systems
    P. Blümler, F. Raudzus, F. Schmid, Scientific Reports 14, 7879 (2024).
    doi: 10.1038/s41598-024-58091-x

  17. Project RACCOON: Automated construction of PDB files for polymers and polymer peptide conjugates
    M. L. Obenauer, K. N. Spauszus, P. Besenius, F. Schmid, J. Open Source Software 9, 6293 (2024).
    doi: 10.21105/joss.06293

  18. Force renormalization for probes immersed in an active bath
    J. Shea, G. Jung, F. Schmid, Soft Matter 20, 1767 (2024).
    doi: 10.1039/D3SM01387A

  19. The effect of electric fields on the structure of water/acetonitrile mixtures
    A. I. Sourpis, N. C. Forero-Martinez, F. Schmid, J. Electrochem. Soc. 170, 083508 (2023).
    doi: 10.1149/1945-7111/acef61

  20. Viscosity of flexible and semiflexible ring melts - molecular origins and flow-induced segregation
    R. Datta, F. Berressem, F. Schmid, A. Nikoubashman, P. Virnau, Macromolecules 56, 7247 (2023).
    doi: 10.1021/acs.macromol.3c01046

  21. One step closer to the understanding of the relationship IDR-LCR-Structure
    M. Gonçalves-Kulik, F. Schmid, M. A. Andrade-Navarro, Genes 14, 1711 (2023).
    doi: 10.3390/genes14091711

  22. Stability of Branched Tubular Membrane Structures
    M. Jung, G. Jung, F. Schmid, Phys. Rev. Lett. 130, 148401 (2023).
    doi: 10.1103/PhysRevLett.130.148401

  23. Understanding and Modeling Polymers: The Challenge of Multiple Scales
    F. Schmid, ACS Polymers Au 3, 28 (2023). (Invited Perspective)
    doi: 10.1021/acspolymersau.2c00049

  24. Compression and interpenetration of adsorption-active brushes
    A.S. Ivanova, A.A. Polotsky, A.M. Skvortsov, L.I. Klushin, F. Schmid, J. Chem. Phys. 158, 024902 (2023).
    doi: 10.1063/5.0130347

  25. Virtual Issue on Polymers: Recent Advances from a Physical Chemistry Perspective (Editorial)
    F. Schmid, J. Phys. Chem. B. 126, 42, 8359 (2022).
    doi: 10.1021/acs.jpcb.2c06378

  26. Cloaking transition of droplets on lubricated brushes
    R. Badr, L. Hauer, D. Vollmer, F. Schmid, J. Phys. Chem. B, 126,36, 7047 (2022).
    doi: 10.1021/acs.jpcb.2c04640

  27. Passive probe particle in an active bath: Can we tell it is out of equilibrium?
    J. Shea, G. Jung, F. Schmid, Soft Matter, 18, 6965 (2022).
    doi: 10.1039/D2SM00905F

  28. Low complexity induces structure in protein regions predicted as intrinsically disordered
    M. Gonçalves-Kulik, P. Mier, K. Kastano, J. Cortés, P. Bernadó, F. Schmid, M. A. Andrade-Navarro, Biomolecules 12, 1098 (2022).
    doi: 10.3390/biom12081098

  29. Editorial: Multiscale simulation methods for soft matter systems
    F. Schmid, J. Phys.: Cond. Matter 34, 160401 (2022).
    doi: 10.1088/1361-648X/ac5071

  30. Adsorption-active polydisperse brush with tunable molecular mass distribution
    A.S. Ivanova, A.A. Polotsky, A.M. Skvortsov, L.I. Klushin, F. Schmid, J. Chem. Phys. 156, 044902 (2022).
    doi: 10.1063/5.0076382

  31. pH-dependent behavior of ionizable cationic lipids in mRNA-carrying lipoplexes investigated by molecular dynamics simulations
    G. Settanni, W. Brill, H. Haas, F. Schmid, Macromolecular Rapid Communications 43, 2100683 (2022).
    doi:10.1002/marc.202100683
    Highlighted in Advanced Science News

  32. Fluctuation-Dissipation Relations far from equilibrium: A case study
    G. Jung, F. Schmid, Soft Matter 17, 6413 (2021).
    doi:10.1039/D1SM00521A

  33. Introducing memory in coarse-grained simulations
    V. Klippenstein, M. Tripathy, G. Jung, F. Schmid, N. van der Vegt, J. Phys. Chem. B, 125, 4931 (2021).
    doi:10.1021/acs.jpcb.1c01120

  34. Shear-thinning in oligomer melts: Molecular origins and Applications
    R. Datta, L. Yelash, F. Schmid, F. Kummer, M. Oberlack, M. Lukacova-Medvidova, P. Virnau, Polymers 13, 2806 (2021).
    doi:10.3390/polym13162806

  35. Dynamic coarse-graining of polymer systems using mobility functions
    B. Li, K. Daoulas, F. Schmid, J. Phys.: Cond. Matter 33, 194004 (2021).
    doi:10.1088/1361-648X/abed1b

  36. Model reduction techniques for the computation of extended Markov parameterizations for generalized Langevin equations
    N. Bockius, J. Shea, G. Jung, F. Schmid, M. Hanke, J. Phys.: Cond. Matter 33, 214003 (2021).
    doi:10.1088/1361-648X/abe6df

  37. Adsorption-active diblock copolymers as universal agents for unusual barrier-free transitions in stimuli-responsive brushes
    S. Qi, L.I. Klushin, A.M. Skvortsov, F. Schmid, Macromolecules 54, 2592 (2021).
    doi:10.1021/acs.macromol.0c02095

  38. Polymer brushes with reversibly tunable grafting density
    L.I. Klushin, A.M. Skvortsov, A.A. Polotsky, A.S. Ivanova, F. Schmid, J. Chem. Phys. 154, 074904 (2021).
    doi:10.1063/5.0038202

  39. Optimizing the nickel boride layer thickness in a spectroelectrochemical ATR-FTIR thin-film flow cell applied in glycerol oxidation
    S. Cychy, S. Lechler, Z. Huang, M. Braun, A.-C. Brix, P. Blümler, C. Andronescu, F. Schmid, W. Schuhmann, M. Muhler Chinese Journal of Catalysis 42, 2206 (2021).
    doi:10.1016/S1872-2067(20)63766-4

  40. Defects and defect engineering in soft matter
    A. Jangizehi, F. Schmid, P. Besenius, K. Kremer, S. Seiffert, Soft Matter 16, 10809-10859 (2020).
    doi:10.1039/d0sm01371d

  41. Dynamic self-consistent field approach for studying kinetic processes in multiblock copolymer melts
    F. Schmid, B. Li, Polymers 12, 2205 (2020).
    [Link] doi:10.3390/polym12102205

  42. Editorial: Characteristics of Impactful Computational Contributions to The Journal of Physical Chemistry B
    P. Jungwirth, E. J. Maginn, B. Roux, F. Schmid, J.-E. Shea, J. Phys. Chem. B 124, 5093 (2020).
    doi:10.1021/acs.jpcb.0c04149

  43. Using copolymers to design tunable stimuli-reponsive brushes
    S. Qi, L.I. Klushin, A.M. Skvortsov, F. Schmid, Macromolecules 53, 13 (2020).
    doi:10.1021/acs.macromol.0c00674

  44. Bottom-up construction of dynamic density functional theories for inhomogeneous polymer systems from microscopic simulations
    S. Mantha, S. Qi, F. Schmid, Macromolecules 53, 3409 (2020).
    doi:10.1021/acs.macromol.0c00130
    Featured in Advances in Engineering

  45. Trans-Cyclooctene-Functionalized PeptoBrushes with Improved Reaction Kinetics of the Tetrazine Ligation for Pretargeted Nuclear Imaging
    E. J. Steen, J. T. Jorgensen, K. Johann, K. Norregaard, B. Sohr, D. Svatunek, A. Birke, V. Shalgunov, P. E. Edem, R. Rossin, C. Seidl, F. Schmid, M. S. Robillard, J. L. Kristensen, H. Mikula, M. Barz, A. Kjaer, M. M. Herth, ACS Nano 14, 568 (2020).
    doi:10.1021/acsnano.9b06905

  46. Quorum-sensing active particles with discontinuous motility
    A. Fischer, F. Schmid, T. Speck, Phys. Rev. E 101, 012601 (2020).
    doi:10.1103/PhysRevE.101.012601

    Erratum: Quorum-sensing active particles with discontinuous motility
    A. Fischer, F. Schmid, T. Speck, Phys. Rev. E 102, 059903 (2020).
    doi:10.1103/PhysRevE.102.059903

  47. Shear modulus of an irreversible diblock copolymer network from self-consistent field theory
    S. Qi, J. Zhou, F. Schmid, Macromolecules 52, 9569 (2019).
    doi:10.1021/acs.macromol.9b09851

  48. Order-order phase transitions induced by supercritical carbon dioxide in triblock copolymer thin films
    A. Abate, G. Vu, C. Piqueras, M.C. del Barrio, L. Gomez, G. Catalini, F. Schmid, D. Vega, Macromolecules 52, 7786 (2019).
    doi:10.1021/acs.macromol.9b01278

  49. Anomalous Slowdown of Polymer Detachment Dynamics on Carbon Nanotubes
    D.A. Vega, A. Milchev, F. Schmid, M. Febbo, Phys. Rev. Lett. 122, 218003 (2019).
    doi:10.1103/PhysRevLett.122.218003

  50. The molecular Lego movie
    A. Nikoubashman, F. Schmid, Nature Chemistry 11, 298 (2019).
    doi:10.1038/s41557-019-0243-8
    Invited News and Views article.

  51. Frequency-dependent dielectric polarizability of flexible polyelectrolytes in electrolyte solution: A Dissipative Particle Dynamics simulation
    G. Jung, S. Kasper, F. Schmid, J. Electrochem. Soc. 166, B3194-B3202 (2019).
    doi:10.1149/2.0231909jes

  52. Polydispersity effects on interpenetration in compressed brushes
    L.I. Klushin, A.M. Skvortsov, S. Qi, T. Kreer, F. Schmid, Macromolecules 52, 1810 (2019).
    doi:10.1021/acs.macromol.8b02361

  53. Structure of lateral heterogeneities in a coarse-grained model for multicomponent membranes
    S. Meinhardt, F. Schmid, Soft Matter 15, 1942 (2019).
    doi:10.1039/c8sm02261e
    Featured on the cover of the journal.

  54. How ill-defined constituents produce well-defined nanoparticles: Effect of polymer dispersity on the uniformity of copolymeric micelles
    S. Mantha, S. Qi, M. Barz, F. Schmid, Phys. Rev. Materials 3, 026002 (2019).
    doi:10.1103/PhysRevMaterials.3.026002
    Highlighted as Editor's Suggestion.

  55. Structure and dynamics of B2O3 melts and glasses: From ab initio to classical molecular dynamics simulations
    C. Scherer, F. Schmid, M. Letz, J. Horbach, Computational Materials Science 159, 73-85 (2019).
    doi:10.1016/j.commatsci.2018.12.001

  56. Theoretical approaches to amphiphilic polymer conetworks
    F. Schmid, Chapter 11 in Amphiphilic polymer co-networks: Synthesis, properties, modelling and application , pp. 239-261, Edt. Costas Patrickios, RSC publishing (2019).
    doi:10.1039/9781788015769-00239

  57. Generalized Brownian dynamics: Construction and numerical integration of non-Markovian particle-based models
    G. Jung, M. Hanke, F. Schmid, Soft Matter 14, 9368 (2018).
    doi:10.1039/C8SM01817K

  58. Polysarcosine and poly(ethylene-glycol) interactions with proteins investigated using molecular dynamics simulations
    G. Settanni, T. Schäfer, C. Muhl, M. Barz, F. Schmid, Computational and Structural Biotechnology Journal 16, 543 (2018).
    doi:10.1016/j.csbj.2018.10.012

  59. Polydisperse brush with the linear density profile
    L.I. Klushin, A.M. Skvortsov, S. Qi, F. Schmid, Polymer Science, Series C 60, Suppl. 2, pp. S84-S94 (2018).
    doi:10.1134/S1811238218020121

  60. Curvature as a guiding field for patterns in thin block copolymer films
    G.T. Vu, A.A. Abate, L.R. Gomez, A.D. Pezzutti, R.A. Register, D.A. Vega, F. Schmid, Phys. Rev. Lett. 121, 087801 (2018).
    doi:10.1103/PhysRevLett.121.087801
    Featured in Physics

  61. Tuning transition properties of stimuli-responsive brushes by polydispersity
    S. Qi, L.I. Klushin, A.M. Skvortsov, M. Liu, J. Zhou, F. Schmid, Adv. Func. Mater. 28, 1800745 (2018).
    doi:10.1002/adfm.201800745

  62. Critical behavior of active Brownian particles
    J.T. Siebert, F. Dittrich, F. Schmid, K. Binder, T. Speck, P. Virnau, Phys. Rev. E 98, 03061(R) (2018).
    doi:10.1103/PhysRevE.98.030601

  63. Phase transitions in single macromolecules: Loop-stretch transition versus loop-adsorption transition in end-grafted polymer chains
    S. Zhang, S. Qi, L.I. Klushin, A.M. Skvortsov, D. Yan, F. Schmid, J. Chem. Phys. 148, 044903 (2018).
    doi:10.1063/1.5013346

  64. Hybrid particle-continuum simulations coupling Brownian dynamics and local dynamic density functional theory
    S. Qi, F. Schmid, Soft Matter 13, 7938 (2017).
    doi:10.1039/C7SM01749A

  65. Frequency-dependent hydrodynamic interactions between two solid spheres
    G. Jung, F. Schmid, Physics of Fluids 29, 126101 (2017).
    doi:10.1063/1.5001565

  66. Potassium triggers a reversible specific stiffness transition of polyethylene glycol
    L. Tüting, W. Ye, G. Settanni, F. Schmid, B. Wolf, R. Ahijado-Guzman, C. Sönnichsen, J. Phys. Chem. C 121, 22396 (2017).
    doi:10.1021/acs.jpcc.7b08987

  67. Dynamic density functional theories for inhomogeneous polymer systems compared to Brownian dynamics simulations
    S. Qi, F. Schmid, Macromolecules 50, 9831 (2017).
    doi:10.1021/acs.macromol.7b02017

  68. Anomalous critical slowdown at a first order phase transition in single polymer chains
    S. Zhang, S. Qi, L.I. Klushin, A.M. Skvortsov, D. Yan, F. Schmid, J. Chem. Phys. 147, 064902 (2017).
    doi:10.1063/1.4997435

  69. Simulating Copolymeric nanoparticle assembly in the co-solvent method: How mixing rates control final particle sizes and morphologies
    S. Keßler, K. Drese, F. Schmid, Polymer 126C, 9-18 (2017).
    doi:10.1016/j.polymer.2017.07.057

  70. Iterative reconstruction of memory kernels
    G. Jung, M. Hanke, F. Schmid, J. Chemical Theory and Computation 13, 2481 (2017).
    doi:10.1021/acs.jctc.7b00274

  71. Interactions between proteins and poly(ethylene-glycol) investigated using Molecular Dynamics simulations
    G. Settanni, J. Zhou, F. Schmid, J. Phys.: Conf. Ser. 921, 012002 (2017).
    doi:10.1088/1742-6596/921/1/012002

  72. Self-assembly of polymeric particles in Poiseuille flow: A hybrid Lattice Boltzmann / External Potential Dynamics simulation study
    J. Heuser, G. J. A. Sevink, F. Schmid, Macromolecules 50, 4474 (2017).
    doi:10.1021/acs.macromol.6b2684

  73. The influence of block ionomer microstructure on polyplex properties: Can simulations help to understand differences in transfection efficiency?
    P. Heller, B. Weber, J. Zhou, D. Hobernik, M. Bros, F. Schmid, M. Barz, Small 13, 1603694 (2017).
    doi:10.1002/smll.201603694

  74. Physical mechanisms of micro- and nanodomain formation in multicomponent lipid membranes
    F. Schmid, Biochimica et Biophysica Acta 1859, 509 (2017).
    doi:10.1016/j.bbamem.2016.10.021

  75. Combining cell-based hydrodynamics with hybrid particle-field simulations: Efficient and realistic simulation of structuring dynamics
    G. J. A. Sevink, F. Schmid, T. Kawakatsu, G. Milano, Soft Matter 13, 1594 (2017).
    doi:10.1039/C6SM02252A

  76. Protein corona composition of PEGylated nanoparticles correlates strongly with amino acid composition of protein surface
    G. Settanni, J. Zhou, T. Suo, S. Schöttler, K. Landfester, F. Schmid, V. Mailänder, Nanoscale 9, 2138 (2017).
    doi:10.1039/C6NR07022A

  77. Negative thermal expansion of quartz glass at low temperatures: An ab initio simulation study
    C. Scherer, J. Horbach, F. Schmid, M. Letz, J. Non-crystalline Solids 468, 82 (2017).
    doi:10.1016/j.jnoncrysol.2017.04.035

  78. Polydisperse polymer brushes: Internal structure, critical behavior, and interaction with flow
    S. Qi, L.I. Klushin, A.M. Skvortsov, F. Schmid, Macromolecules 49, 9665 (2016).
    doi:10.1021/acs.macromol.6b02026

  79. Shear-aligned block copolymer monolayers as seeds to control the orientational order in cylinder-forming block copolymer thin films
    A. Abate, G. Vu, A. Pezzutti, N. Garcia, R. Davis, F. Schmid, R. Register, D. Vega, Macromolecules 49, 7588 (2016).
    doi:10.1021/acs.macromol.6b00816

  80. A hybrid particle-continuum resolution method and its application to a homopolymer solution
    S. Qi, H. Behringer, T. Raasch, F. Schmid, Eur. Phys. J. Spec. Top. 225, 1527 (2016).
    doi:10.1140/epjst/e2016-60096-8

  81. Computing bulk and shear viscosities from simulations of fluids with dissipative and stochastic interactions
    G. Jung, F. Schmid, J. Chem. Phys. 144, 204104 (2016).
    doi:10.1063/1.4950760

  82. Complex formation between polyelectrolytes and oppositely charged oligoelectrolytes
    J. Zhou, M. Barz, F. Schmid, J. Chem. Phys. 144, 164902 (2016).
    doi:10.1063/1.4947255

  83. Modeling size controlled nanoparticle precipitation with the co-solvency method by spinodal decomposition
    S. Keßler, F. Schmid, K. Drese, Soft Matter 12, 7231 (2016).
    doi:10.1039/C6SM01198E

  84. Collective behavior of quorum-sensing run-and-tumble particles in confinement
    M. Rein, N. Heinß, F. Schmid, T. Speck, Phys. Rev. Lett. 116, 058102 (2016).
    doi:10.1103/PhysRevLett.116.058102

  85. Molecular dynamics simulations of the initial adsorption stages of fibrinogen on mica and graphite surfaces
    S. Köhler, F. Schmid, G. Settanni, Langmuir 48, 13180 (2015).
    doi:10.1021/acs.langmuir.5b00371

  86. Statistical properties of linear-hyperbranched graft copolymers prepared via ''hypergrafting'' of ABm monomers from linear B-functional core chains: A Molecular Dynamics simulation
    H. Rabbel, H. Frey, and F. Schmid, J. Chem. Phys. 143, 243125 (2015).
    doi:10.1063/1.4935371

  87. Interplay of curvature-induced micro- and nanodomain structures in multicomponent lipid bilayers
    L. Brodbek, F. Schmid, Int J Adv Eng Sci Appl Math 8, 111 (2016).
    doi:10.1007/s12572-015-0152-z ; SharedIt link

  88. Computer simulations of single particles in external electric fields
    J. Zhou and F. Schmid, Soft Matter 11, 6728 (2015).
    doi:10.1039/C5SM01485A

  89. Stimuli-responsive brushes with active minority components: Monte Carlo study and analytical theory
    S. Qi, L.I. Klushin, A.M. Skvortsov, A.A. Polotsky, F. Schmid, Macromolecules 48, 3775 (2015).
    doi:10.1021/acs.macromol.5b00563

  90. The internal dynamics of fibrinogen and its implications for coagulation and adsorption
    S. Köhler, F. Schmid, G. Settanni, PLOS Comput. Biol. 11, e1004346 (2015).
    doi:10.1371/journal.pcbi.1004346

  91. Solvent determines nature of effective interactions between nanoparticles in polymer brushes
    Z. Lian, S. Qi, J. Zhou, F. Schmid, J. Phys. Chem. B 119, 4099 (2015).
    doi:10.1021/jp511911g

  92. Morphology control in biphasic hybrid systems of semiconducting materials
    F. Mathias, A. Fokina, K. Landfester, W. Tremel, F. Schmid, K. Char, R. Zentel, Macromolecular Rapid Communications 36, 959 (2015).
    doi:10.1002/marc.201400688

  93. An efficient dissipative particle dynamics-based algorithm for simulating electrolyte solutions
    S. Medina, J. Zhou, Z.-G. Wang, F. Schmid, J. Chem. Phys. 142, 024103 (2015).
    doi:10.1063/1.4905102

  94. Flows and mixing in channels with misaligned superhydrophobic walls
    T. V. Nizkaya, E. S. Asmolov, J. Zhou, F. Schmid, O. I. Vinogradova, Phys. Rev. E 91, 033020 (2015).
    doi:10.1103/PhysRevE.91.033020

  95. The structure of cholesterol in lipid rafts
    L. Toppozini, S. Meinhardt, C. L. Armstrong, Z. Yamani, N. Kuvcerka, F. Schmid, M. Rheinstädter, Phys. Rev. Lett. 113, 228101 (2014).
    doi:10.1103/PhysRevLett.113.228101

  96. Sharp and fast: Sensors and switches based on polymer brushes with adsorption-active minority chains
    L.I. Klushin, A.M. Skvortsov, A.A. Polotsky, S. Qi, F. Schmid, Phys. Rev. Lett. 113, 068303 (2014).
    See also APS focus story in Physics 7, 83 (2014).
    doi:10.1103/PhysRevLett.113.068303

  97. Strategy for good dispersion of well-defined tetrapods in semiconducting polymer materials
    J. Lim, L. zur Borg, S. Dolezel, F. Schmid, K. Char, R. Zentel, Macromolecular Rapid Communications 35, 1685 (2014).
    doi:10.1002/marc.201400314

  98. Computational studies of biomembrane systems: Theoretical considerations, computer simulation models, and applications
    M. Deserno, K. Kremer, H. Paulsen, C. Peter, F. Schmid, Advances in Polymer Science 260, 237 (2014).
    doi:10.1007/12_2013_258

  99. On ripples and rafts: Curvature induced nanoscale structures in lipid membranes
    F. Schmid, S. Dolezel, O. Lenz, S. Meinhardt, J. Physics: Conference Series 487, 012004 (2014).
    doi:10.1088/1742-6596/487/1/012004

  100. Computer simulation of flow past superhydrophobic striped surfaces
    J. Zhou, A. V. Belyaev, E. S. Asmolov, O. I. Vinogradova, F. Schmid, NIC Series 47, 407 (2014).

  101. The flexibility of fibrinogen and its initial adsorption stages at graphite and mica surfaces
    S. Köhler, F. Schmid, G. Settanni, NIC Series 47, 117 (2014).

  102. A Dissipative-Particle-Dynamics model for simulating dynamics of charged colloids
    J. Zhou, F. Schmid, in 'High performance computing in Science and Engineering' 13, W. E. Nagel et al eds., Springer (2014).

  103. Computer simulations of charged colloids in alternating electric fields
    J. Zhou, F. Schmid, Eur. Phys. J.: Special topics 222, 2911 (2013).
    doi:10.1140/epjst/e2013-02066-y

  104. Effective slippage on superhydrophobic trapezoidal grooves
    J. Zhou, E.S. Asmolov, F. Schmid, O.I. Vinogradova, J. Chem. Phys. 139, 174708 (2013).
    doi:10.1063/1.4827867

  105. Self-consistent field approach for crosslinked copolymer materials
    F. Schmid, Phys. Rev. Lett. 111, 028303 (2013).
    doi:10.1103/PhysRevLett.111.028303

  106. Elastic properties and line tension of self-assembled bilayer membranes
    J. Li, K.A. Pastor, A.-C. Shi, F. Schmid, J. Zhou, Phys. Rev. E 88, 012718 (2013).
    doi:10.1103/PhysRevE.88.012718

  107. Hyperbranched graft-copolymers by "Hypergrafting" of ABm monomers from polydisperse macroinitiator cores: Theory meets synthesis
    C. Schüll, H. Rabbel, F. Schmid, H. Frey, Macromolecules 46, 5823 (2013).
    doi:10.1002/ma401119r

  108. Dynamic and dielectric response of charged colloids in electrolyte solutions to external electric fields
    J. Zhou, R. Schmitz, B. Dünweg, F. Schmid, J. Chem. Phys. 139, 024901 (2013).
    doi:10.1063/1.4812692

  109. Using field theory to construct hybrid particle-continuum simulation schemes with adaptive resolution for soft matter systems
    S. Qi, H. Behringer, F. Schmid, New J. Physics 15, 125009 (2013).
    doi:10.1088/1367-2630/15/12/125009

  110. A hybrid particle-continuum model in soft-condensed matter simulations
    S. Qi, H. Behringer, F. Schmid, NIC Series 46, 193 (2013).

  111. Effective slip-length tensor for a flow over weakly stripping stripes
    E.S. Asmolov, J. Zhou, F. Schmid, O.I. Vinogradova, Phys. Rev. E 88, 023004 (2013).
    doi:10.1103/PhysRevE.88.023004

  112. Monolayer curvature stabilizes nanoscale raft domains in mixed lipid bilayers
    S. Meinhardt, R.L.C. Vink, F. Schmid, PNAS 110, 4476 (2013).
    doi:10.1073/pnas.1221075110

  113. AC-field induced polarization for uncharged colloids in salt solution: A Dissipative Particle Dynamics simulation
    J. Zhou, F. Schmid, Eur. Phys. J. E 36, 33 (2013).
    doi:10.1140/epje/i2013-13033-0

  114. A model for rod-coil block copolymers
    S. Dolezel, H. Behringer, F. Schmid, Polymer Science, Ser. C 55, 70 (2013).
    doi:10.1134/S1811238213060015

  115. Interactions of membranes with coarse-grain proteins: A comparison
    J. Neder, P. Nielaba, B. West, F. Schmid, New J. Physics 14, 125017 (2012).
    doi:10.1088/1367-2630/14/12/125017

  116. Exploiting seeding of random number generators for efficient domain decomposition parallelization of dissipative particle dynamics
    Y. Afshar, F. Schmid, A. Pishevar, S. Worley, Comp. Phys. Comm. 184, 1119 (2013).
    doi:10.1016/j.cpc.2012.12.003

  117. A new algorithm for simulating flows of conducting fluids in the presence of electric fields
    M. Joulaian, A. Pishevar, S. Khajepor, F. Schmid, Y. Afshar, Comp. Phys. Comm. 183, 2405 (2012).
    doi:10.1016/j.cpc.2012.06.008

  118. Fluctuations in lipid bilayers: Are they understood?
    F. Schmid, Biophys. Rev. and Lett. 8, 1 (2013).
    doi:10.1142/S1793048012300113

  119. Anisotropic flow in striped superhydrophobic channels
    J. Zhou, A. Belyaev, F. Schmid, O. Vinogradova, J. Chem. Phys. 136, 194706 (2012).
    doi:10.1063/1.4718834

  120. Dielectric response of nanoscopic spherical colloids in alternating electric fields: A dissipative particle dynamics simulation
    J. Zhou, F. Schmid, J. Phys.: Cond. Matter 24, 464112 (2012).
    doi:10.1088/0953-8984/24/46/464112

  121. Mesoscopic simulation methods for studying flow and transport in electric fields in micro- and nanochannels
    J. Smiatek, F. Schmid, Advances in Microfluidics , Chapter 5 (invited), pp. 97-126, InTech Open Access Publisher (2012).
    doi:10.5772/35773

  122. Separation of chiral particles in nanofluidic channels
    S. Meinhardt, J. Smiatek, R. Eichhorn, F. Schmid, Phys. Rev. Lett. 108, 214504 (2012).
    doi:10.1103/PhysRevLett.108.214504

  123. Reply to Comment on: ''Are stress-free membranes really 'tensionless'?''
    F. Schmid, EPL 97, 18002 (2012).
    doi:10.1209/0295-5075/97/18002

  124. Hybrid Lattice Boltzmann / Dynamic Self-Consistent Field simulations of microphase separation and vesicle formation in block copolymer systems,
    L. Zhang, G. J. A. Sevink, F. Schmid, Macromolecules 44, 9434 (2011).
    doi:10.1021/ma2018638

  125. Membrane-mediated protein-protein interaction: A Monte Carlo study
    J. Neder, P. Nielaba, B. West, F. Schmid, Current Nanoscience 7, 656 (2011).
    doi:10.2174/157341311797483655

  126. Are stress-free membranes really 'tensionless'?
    F. Schmid, EPL 95, 28008 (2011).
    doi:10.1209/0295-5075/95/28008

  127. Theory and simulation of multiphase polymer systems
    F. Schmid, chapter 3 in Handbook of Multiphase Polymer Systems , Eds. A. Boudenne, L. Ibos, Y. Candau, S. Thomas, pp. 31-80 (Wiley, 2011).
    doi:10.1002/9781119972020.CH3

  128. Analytical model for the long-distance tracer transport in plants
    J. Bühler, G. Huber, F. Schmid, P. Blümler, Journal of Theoretical Biology 270, 70 (2011).
    doi:10.1016/j.jtbi.2010.11.005

  129. Mesoscopic simulations of electroosmotic flow and electrophoresis in nanochannels
    J. Smiatek, F. Schmid, Computer Physics Communications 182, 1941 (2011).
    doi:10.1016/j.cpc.2010.11.021

  130. A method to compute absolute free energies or enthalpies of fluids
    F. Schmid, T. Schilling, Physics Procedia 4, 131 (2010).
    doi:10.1016/j.phpro.2010.08.017

  131. Polyelectrolyte electrophoresis in nanochannels: A Dissipative Particle Dynamics simulation
    J. Smiatek, F. Schmid, J. Phys. Chem. B 114, 6266 (2010).
    doi:10.1021/jp100128p

  132. Coarse-grained simulations of membranes under tension
    J. Neder, B. West, P. Nielaba, F. Schmid, J. Chem. Phys. 132, 115101 (2010).
    doi:10.1063/1.3352583

  133. Membrane-protein interactions in lipid bilayers: Molecular simulations versus elastic theory
    B. West, F. Schmid, IAS Series Vol. 3, 279 (2010).

  134. Fluctuations and elastic properties of lipid membranes in the fluid and gel state: A coarse-grained Monte Carlo study
    B. West, F. Schmid, Soft Matter 6, 1275 (2010).
    doi:10.1039/B920978F

  135. Computing absolute free energies of disordered structures by molecular simulations
    T. Schilling, F. Schmid, J. Chem. Phys. 131, 231102 (2009).
    doi:10.1063/1.3274951

  136. Random copolymer adsorption: Morita approximation compared to exact numerical calculations
    A.A. Polotsky, A. Degenhard, F. Schmid, J. Chem. Phys. 131, 04903 (2009).
    doi:10.1063/1.3193723

  137. Mesoscopic simulations of the counterion-induced electroosmotic flow in nanochannels - a comparative study
    J. Smiatek, M. Sega, C. Holm, U.D. Schiller, F. Schmid, J. Chem. Phys. 130, 244702 (2009).
    doi:10.1063/1.3152844

  138. Toy amphiphiles on the computer: What can we learn from generic models?
    F. Schmid, Macromolecular Rapid Communications 30, 741 (2009).
    doi:10.1002/marc.200800750

  139. Membrane-protein interactions in a generic coarse-grained model for lipid bilayers
    B. West, F.L.H. Brown, F. Schmid, Biophysical Journal 96, 101 (2009).
    doi:10.1529/biophysj.108.138677

  140. Influence of correlations on molecular recognition
    H. Behringer, F. Schmid, Phys. Rev. E 78, 031903 (2008).
    doi:10.1103/PhysRevE.78.031903

  141. Correlation effects in protein-protein recognition
    H. Behringer, F. Schmid, NIC-Series Vol. 40, 165-168 (2008).

  142. Spontaneous formation of complex micelles from homogeneous solution
    X. H. He, F. Schmid, Phys. Rev. Lett. 100, 137802 (2008).
    See also Physical Review Focus, Vol. 21, Story 12.
    doi:10.1103/PhysRevLett.100.137802

  143. Effective protein interactions in a coarse-grained model for lipid membranes
    B. West, F. Schmid, NIC-Series Vol. 39, 271-278 (2008).

  144. Kinetically driven helix formation during homopolymer collapse processes
    S. A. Sabeur, F. Hamdache, F. Schmid, Phys. Rev. E 77, 020802(R) (2008).
    doi:10.1103/PhysRevE.77.020802

  145. Tunable-slip boundaries for coarse-grained simulations of fluid flow
    J. Smiatek, M. P. Allen, F. Schmid, Eur. Phys. J. E 26, 115 (2008).
    doi:10.1140/epje/i2007-10311-4

  146. Coarse-grained lattice model for molecular recognition
    H. Behringer, A. Degenhard, F. Schmid, NIC-Series Vol. 36, 83-85 (2007).

  147. Coarse-grained lattice model for investigating the role of cooperativity in molecular recognition
    H. Behringer, A. Degenhard, F. Schmid, Physical Review E 76, 031914 (2007).
    doi:10.1103/PhysRevE.76.031914

  148. Fluctuating interfaces in liquid crystals
    F. Schmid, G. Germano, S. Wolfsheimer, T. Schilling, Macromolecular Symposia 252, 110 (2007).
    doi:10.1002/masy.200750611

  149. Using prenucleation to control complex copolymeric vesicle formation in solution
    X. H. He, F. Schmid, Macromolecules 39, 8908 (2006).
    doi:10.1021/ma0622478

  150. A generic model for lipid monolayers, bilayers, and membranes
    F. Schmid, D. Düchs, O. Lenz, B. West, Comp. Phys. Comm. 177, 168 (2007).
    doi:10.1016/j.cpc.2007.02.066

  151. Developing and analyzing idealized models for molecular recognition
    H. Behringer, T. Bogner, A.A. Polotsky, A. Degenhard, F. Schmid J. Biotechnology 129, 268 (2006).
    doi:10.1016/j.jbiotec.2007.01.035

  152. Structure of symmetric and asymmetric ripple phases in lipid bilayers
    O. Lenz, F. Schmid, Phys. Rev. Lett. 98, 058104 (2007).
    doi:10.1103/PhysRevLett.98.058104

  153. A thermostat for molecular dynamics of complex fluids
    M. P. Allen, F. Schmid, Mol. Simulations 33, 21 (2007).
    doi:10.1080/08927020601052856

  154. A coarse-grained lattice model for molecular recognition
    H. Behringer, A. Degenhard, F. Schmid, Phys. Rev. Lett. 97, 128101 (2006).
    doi:10.1103/PhysRevLett.97.128101

  155. Bistable anchoring of nematics on rough substrates
    F. Schmid, D. L. Cheung, Europhys. Lett. 76, 243 (2006).
    doi:10.1209/epl/i2006-10248-8

  156. Stabilization of membrane pores by packing
    D. Bicout, F. Schmid, E. Kats, Phys. Rev. E 73, 060101(R) (2006).
    doi:10.1103/PhysRevE.73.060101

  157. Dynamics of spontaneous vesicle formation in dilute solutions of amphiphilic diblock copolymers
    X. H. He, F. Schmid, Macromolecules 39, 2654 (2006).
    doi:10.1021/ma052536g

  158. Coarse-grained models of complex fluids at equilibrium and under shear
    F. Schmid, in Computer Simulations in Condensed Matter: from Materials to Chemical Biology , Vol. 2, pp. 211-258, Eds. K. Binder, G. Ciccotti, M. Ferrario (Springer, Berlin, 2006).
    doi:10.1007/3-540-35284-8_10

  159. Isotropic-nematic transition in liquid crystals confined between rough walls
    D. Cheung, F. Schmid, Chem. Phys. Lett. 418, 392 (2006).
    doi:10.1016/j.cplett.2005.11.010

  160. Approaching criticality in polymer/polymer systems
    C. Carelli, R. A. L. Jones, R. N. Young, R. Cubitt, R. Dalgliesh, F. Schmid, M. Sferrazza, Phys. Rev. E 72, 031807 (2005).
    doi:10.1103/PhysRevE.72.031807

  161. The effects of long-ranged and short-ranged forces in confined near-critical polymeric liquids
    C. Carelli, R. A. L. Jones, R. N. Young, R. Cubitt, R. Krastev, T. Gutberlet, R. Dalgliesh, F. Schmid, M. Sferrazza, Europhys. Lett. 71, 763 (2005).
    doi:10.1209/epl/i2005-10162-7

  162. Nematic-isotropic interfaces under shear: A Molecular Dynamics simulation
    G. Germano, F. Schmid, J. Chem. Phys. 123, 214703 (2005).
    doi:10.1063/1.2131065

  163. Nematic liquid crystals at rough and fluctuating interfaces
    J. Elgeti, F. Schmid, Eur. Phys. J. E 18, 407 (2005).
    doi:10.1140/epje/e2005-00051-8

  164. Fluctuations and defects in lamellar stacks of amphiphilic bilayers
    C. Loison, M. Mareschal, F. Schmid, Comp. Phys. Comm. 169, 99 (2005).
    doi:10.1016/j.cpc.2005.03.023

  165. Monte Carlo simulations of liquid crystals near rough walls
    D. Cheung, F. Schmid, J. Chem. Phys. 122, 074902 (2005).
    doi:10.1063/1.1844495

  166. Molecular recognition in a lattice model: An enumeration study
    T. Bogner, A. Degenhard, F. Schmid, Phys. Rev. Lett. 93, 268108 (2005).
    doi:10.1103/PhysRevLett.93.268108

  167. Two-state migration of DNA in a structured Microchannel
    M. Streek, F. Schmid, T. T. Duong, D. Anselmetti, A. Ros, Phys. Rev. E 71, 011905 (2005).
    doi:10.1103/PhysRevE.71.011905

  168. Incorporating fluctuations and dynamics in Self-Consistent Field theories for polymer blends
    M. Müller, F. Schmid, in Advances in Polymer Science 185, pp. 1-85 (Springer Verlag, Berlin, 2005).
    doi:10.1007/b136794

  169. Polymer adsorption onto random planar surfaces: Interplay of polymer and surface correlations
    A.A. Polotsky, F. Schmid, A. Degenhard, J. Chem. Phys. 121, 4853 (2004).
    doi:10.1063/1.1778137

  170. Formation and structure of the microemulsion phase in ternary AB + A + B polymeric emulsions
    D. Düchs, F. Schmid, J. Chem. Phys. 121, 2798 (2004).
    doi:10.1063/1.1768152

  171. Pores in bilayer membranes of amphiphilic molecules: Coarse-grained Molecular Dynamics simulations compared with simple mesoscopic models
    C. Loison, M. Mareschal, F. Schmid, J. Chem. Phys. 121, 1890 (2004).
    doi:10.1063/1.1752884

  172. A density functional theory study of the confined soft ellipsoid fluid
    D. Cheung, F. Schmid, J. Chem. Phys. 120, 9185 (2004).
    doi:10.1063/1.1703522

  173. Influence of sequence correlations on the adsorption of random copolymers onto homogeneous planar surfaces
    A.A. Polotsky, F. Schmid, A. Degenhard, J. Chem. Phys. 120, 6246 (2004).
    doi:10.1063/1.1647045

  174. A simple computer model for liquid lipid bilayers
    O. Lenz, F. Schmid, J. Mol. Liquids 117, 147 (2005).
    doi:10.1016/j.molliq.2004.08.008

  175. Mechanisms of DNA separation in entropic trap arrays: A Brownian Dynamics simulation
    M. Streek, F. Schmid, T. T. Duong, A. Ros, J. Biotechnology 112, 79 (2004).
    doi:10.1016/j.jbiotec.2004.04.021

  176. Amphiphiles at interfaces: Simulation of structure and phase behavior
    F. Schmid, D. Düchs, O. Lenz, C. Loison, in ``Computational Soft Matter: From Synthetic Polymers to Proteins'', Lecture Notes, NIC-Series Vol. 23, 323 (2004).

  177. Fluctuations in polymer blends
    D. Düchs, F. Schmid, NIC-Series Vol. 20, 343 (2004).

  178. Simulation of nematic-isotropic phase coexistence in liquid crystals under shear
    G. Germano, F. Schmid, NIC-Series Vol. 20, 311 (2004).

  179. Size dependent free solution DNA electrophoresis in structured microfluidic systems
    T. T. Duong, G. Kim, R. Ros, M. Streek, F. Schmid, J. Brugger, A. Ros, D. Anselmetti, Microelectronic Engineering, 67, 905 (2003).
    doi:10.1016/S0167-9317(03)00153-9

  180. Gel-free electrophoresis of lambda- and T2-DNA in structured microfluidic devices
    T. T. Duong, M. Streek, F. Schmid, A. Ros, D. Anselmetti, Schmid, Proceedings of μ-TAS 2003 1, 749-752 (2003).

  181. Fluctuation effects in ternary AB+A+B polymeric emulsions
    Dominik Düchs, Venkat Ganesan, Glenn H. Fredrickson, Friederike Schmid, Macromolecules, 36, 9237 (2003).
    doi:10.1021/ma030201y

  182. Thermal fluctuations in a lamellar phase of a binary amphiphile-solvent mixture: a molecular dynamics study
    Claire Loison, Michel Mareschal, Kurt Kremer, Friederike Schmid, J. Chem. Phys. 119, 13138 (2003).
    doi:10.1063/1.1626634

  183. Local structure in nematic and isotropic liquid crystals
    Nguyen Hoang Phuong, Friederike Schmid, J. Chem. Phys. 119, 1214 (2003).
    doi:10.1063/1.1577322

  184. Density functional for anisotropic fluids
    G. Cinacchi, F. Schmid, J. Physics: Cond. Matter, 14, 12223 (2002).
    doi:10.1088/0953-8984/14/46/323

  185. Simulations of liquid crystals: bulk structure and interfacial properties
    N. Akino, G. Germano, N. H. Phuong, F. Schmid, M. P. Allen, NIC-Series Vol. 9, 335 (2002).
    doi:10.1063/1.1481375

  186. Surface anchoring on layers of grafted liquid-crystalline chain molecules: A computer simulation
    H. Lange, F. Schmid, J. Chem. Phys. 117, 362 (2002).
    doi:10.1063/1.1481375

  187. Spatial order in liquid crystals: Computer simulations of systems of ellipsoids
    F. Schmid, Nguyen H. Phuong, in ``Morphology of Condensed Matter: Physics and Geometry of Spatially Complex Systems'', p. 172, Lecture Notes in Physics, K. Mecke and D. Stoyan eds., Springer Verlag (2002).
    doi:10.1007/3-540-45782-8_7

  188. An anchoring transition at surfaces with grafted liquid-crystalline chain molecules
    H. Lange, F. Schmid, Eur. Phys. J. E 7, 175 (2002).
    doi:doi.org/10.1140/epje/i200101098

  189. Wetting of a symmetrical binary fluid on a wall
    N. Wilding, F. Schmid, Computer Physics Communication 147, 149 (2002).
    doi: 10.1103/PhysRevE.63.031201

  190. Surface anchoring on liquid crystalline polymer brushes
    H. Lange, F. Schmid, Computer Physics Communication 147, 276 (2002).
    doi:10.1016/S0010-4655(02)00260-6

  191. The direct correlation function in nematic liquid crystals from computer simulation
    N. H. Phuong, G. Germano, F. Schmid, Computer Physics Communication 147, 350 (2002).
    doi:10.1016/S0010-4655(02)00302-8

  192. Elastic constants from direct correlation functions in nematic liquid crystals: A computer simulation study
    N. H. Phuong, G. Germano, F. Schmid, J. Chem. Phys 115, 7227 (2001).
    doi:10.1063/1.1404388

  193. Critical phenomena at the surface of systems undergoing a bulk first order transition: Are they understood?
    K. Binder, F. F. Haas, and F. Schmid, "Computer Simulation Studies in Condensed Matter Physics" XIV, p. 85-96, Eds. D. P. Landau, S. P. Lewis, and H. B. Schüttler (Springer, Heidelberg, 2002).
    doi:10.1007/978-3-642-59406-9_13

  194. Phase behaviour of amphiphilic monolayers: Theory and simulation
    D. Düchs, F. Schmid, J. Phys.: Cond. Matter 13, 4853 (2001).
    doi:10.1088/0953-8984/13/21/313

  195. Molecular Dynamics study of the nematic-isotropic interface
    N. Akino, F. Schmid, M. P. Allen, Phys. Rev. E 63, 041706 (2001).
    doi:10.1103/PhysRevE.63.041706

  196. Computer simulations of self-assembled monolayers
    F. Schmid, C. Stadler, D. Düchs, J. Phys: Cond. Matter 13, 8653 (2001).
    doi:10.1088/0953-8984/13/38/308

  197. Wetting of a symmetrical binary fluid mixture on a wall
    F. Schmid, N. B. Wilding, Phys. Rev. E 63, 031201 (2001).
    doi:10.1016/S0010-4655(02)00234-5

  198. "Intrinsic" profiles and capillary waves at interfaces between coexisting phases in polymer blends
    K. Binder, M. Müller, F. Schmid, Adv. in Colloid and Interface Science 94, 237 (2001).
    doi:10.1016/S0001-8686(01)00064-1

  199. Surface tension of the isotropic-nematic interface
    A. J. McDonald, M. P. Allen, F. Schmid, Phys. Rev. E 63, 010701(R) (2001).
    doi:10.1103/PhysRevE.63.010701

  200. Surface induced disorder in body-centered cubic alloys
    F.F. Haas, F. Schmid, K. Binder, Phys. Rev. B. 61, 15077 (2000).
    doi:10.1103/PhysRevB.61.15077

  201. Order and disorder phenomena at surfaces of binary alloys
    F.F. Haas, F. Schmid, K. Binder, in ''Properties of Inorganic Solids 2'', 77, Kluwer Academic, New York (2000).
    doi:10.1007/978-1-4615-1205-9_7

  202. Systems involving surfactants
    F. Schmid, Chapter 13 of ``Computational methods in colloid and interface science'', p. 631, edt. M. Borowko, Marcel Dekker inc., 2000.
    In doi:10.1201/9780429115813

  203. Phase behavior of grafted chain molecules: Effect of head size and chain length
    C. Stadler, F. Schmid, J. Chem. Phys. 110, 9697 (1999).
    doi:10.1063/1.478934

  204. Short grafted chains: Monte Carlo simulations of a model for monolayers of amphiphiles
    C. Stadler, H. Lange, F. Schmid, Phys. Rev. E 59, 4248 (1999).
    doi:10.1103/PhysRevE.59.4248

  205. How simulations can clarify phase transitions of complex materials
    K. Binder, M. Müller, F. Schmid, Computing in Science and Engineering 1, Vol. 3, 10 (1999).

  206. Interfacial profiles between coexisting phases in thin films: Cahn Hilliard treatment versus capillary waves
    K. Binder, M. Müller, F. Schmid, A. Werner, J. Stat. Phys. 95, 1045 (1999).
    doi:10.1023/A:1004510702716

  207. Monte Carlo simulations of copolymers at homopolymer interfaces: Interfacial structure as a function of the copolymer density
    A. Werner, F. Schmid, M. Müller, J. Chem. Phys. 110, 5370 (1999).
    doi:10.1063/1.478432

  208. Intrinsic profiles and capillary waves at homopolymer interfaces: A Monte Carlo study
    A. Werner, F. Schmid, M. Müller, K. Binder, Phys. Rev. E 59, 728 (1999).
    doi:10.1103/PhysRevE.59.728

  209. Effect of long range forces on the interfacial profiles in thin binary polymer films
    A. Werner, M. Müller, F. Schmid, K. Binder, J. Chem. Phys. 110, 1221 (1999).
    doi:10.1063/1.478164

  210. Self-consistent field theories for complex fluids
    F. Schmid, Topical review, Journ. of Physics: Cond. Matt. 10, 8105 (1998).
    doi:10.1088/0953-8984/10/37/002

  211. Interfaces in immiscible polymer blends: A Monte Carlo simulation approach on the CRAY T3E.
    A. Werner, M.Müller, F.Schmid, K.Binder, in High Performance Computing in Science and Engineering, 176, E.Kramer and W. Jäger (Eds), Springer Verlag (1998).
    doi:10.1007/978-3-642-58600-2_19

  212. Monte Carlo simulations of interfaces in polymer blends
    M. Müller, F. Schmid, Annual Reviews in Computational Physics VI, pp. 59-127, D. Stauffer edt., World Scientific, Singapore (1999).
    doi:10.1142/9789812815569_0003

  213. Liquid-vapour phase behaviour of a symmetrical binary fluid mixture
    N.B. Wilding, F. Schmid, P. Nielaba, Phys. Rev. E 58, 2201 (1998).
    doi:10.1103/PhysRevE.58.2201

  214. Simulation of interfaces between coexisting phases in materials
    K. Binder, M. Müller, F. Schmid, A. Werner, Journal of Computer aided Materials Design 4, 137 (1998).
    doi:10.1023/A:1008631902826

  215. Theoretical modeling of Langmuir monolayers
    F. Schmid, C. Stadler, H. Lange, Colloids and Surfaces A 149, 301 (1999).
    doi:10.1016/S0927-7757(98)00315-X

  216. Interfaces between coexisting phases in polymer mixtures: What can we learn from Monte Carlo Simulations?
    K. Binder, M. Müller, F. Schmid and A. Werner, Macromolecular Symposia 139, 1, (1999).
    doi:10.1002/masy.19991390102

  217. Interfaces in partly compatible polymer mixtures: A Monte Carlo simulation approach
    K. Binder, M. Müller, F. Schmid, and A. Werner, Physica A 249, 293 (1998).
    doi:10.1016/S0378-4371(97)00477-9

  218. Was kann die Computersimulation für die Materialwissenschaft leisten?
    K. Binder, W. Kob, M. Müller, P. Nielaba, W. Paul, F. Schmid, in ``Forschungsmagazin der Johannes-Gutenberg Universität Mainz'' 13, 6 (1997).

  219. Anomalous size-dependence of interfacial profiles between coexisting phases of polymer mixtures in thin film geometry: A Monte-Carlo simulation
    A. Werner, F. Schmid, M. Müller, and K. Binder, J. Chem. Phys. 107, 8175 (1997).
    doi:10.1063/1.475118

  220. Monte Carlo simulation of Langmuir monolayer models
    F. Schmid, C. Stadler, H. Lange, Computer Simulations in Condensed Matter Physics X, p. 37, D. Landau, K.K. Mon, H.B. Schüttler eds., Springer, Heidelberg 1998.
    doi:10.1007/978-3-642-46851-3_4

  221. Influence of the head group size on the direction of tilt in Langmuir monolayers
    F. Schmid, H. Lange, J. Chem. Phys. 106, 3757 (1997).
    doi:10.1063/1.473426

  222. Stabilization of tilt order by chain flexibility in Langmuir monolayers
    F. Schmid, Phys. Rev. E. 55, 5774 (1997).
    doi:10.1103/PhysRevE.55.5774

  223. Simulation von Phasengrenzflächen in Polymermischungen
    F. Schmid, M. Müller, A. Werner, K. Binder, Freiberger Forschungshefte B 279, 201 (1996).

  224. Diblock copolymers at a homopolymer-homopolymer - interface: A Monte Carlo simulation
    A. Werner, F. Schmid, K. Binder, M. Müller, Macromolecules 29, 8241 (1996).
    doi:10.1021/ma960614h

  225. Grafted rods: A tilting phase transition
    F. Schmid, D. Johannsmann, A. Halperin, J. Physique II 6, 1331 (1996).
    doi:10.1051/jp2:1996134

  226. A Self consistent field approach to surfaces of compressible polymer blends
    F. Schmid, J. Chem. Phys. 104, 9191 (1996).
    doi:10.1063/1.471610

  227. Surface ordering and surface segregation in binary alloys
    F. Schmid, in "Stability of Materials", 173, NATO-ASI Series (1996).
    doi:10.1007/978-1-4613-0385-5_7

  228. Errors in Monte Carlo simulations using shift register random number generators
    F. Schmid, N.B. Wilding, Intn. Journ. Mod. Phys C 6, 781 (1995).
    doi:10.1142/S0129183195000642

  229. Quantitative comparison of self consistent field theories for polymers near interfaces with Monte Carlo simulations
    F. Schmid, M. Müller, Macromolecules 28, 8639 (1995).
    doi:10.1021/ma00129a024

  230. Effect of fluctuations on the wetting transition in amphiphilic systems
    F. Schmid, M. Schick, J. Chem. Phys. 102, 7197 (1995).
    doi:10.1063/1.469114

  231. Effect of capillary wave fluctuations on wetting transitions in balanced amphiphilic systems
    F. Schmid, M. Schick, Zeitschr. f. Physik B 97, 189 (1995).
    doi:10.1007/BF01307469

  232. Liquid phases of Langmuir monolayers
    F. Schmid, M. Schick, J. Chem. Phys. 102, 2080 (1995).
    doi:10.1063/1.468729

  233. Spinodal phase separation in complex fluids
    F. Schmid, R. Blossey, J. Physique II (France) 4, 1195 (1994).
    doi:10.1051/jp2:1994194

  234. Monte Carlo study of interfacial properties in an amphiphilic system
    F. Schmid, M. Schick, Phys. Rev. E 49, 494 (1994).
    doi:10.1103/PhysRevE.49.494

  235. Phase transitions of a confined complex fluid
    F. Schmid, M. Schick, Phys. Rev. E 48, 1882 (1993).
    doi:10.1103/PhysRevE.48.1882

  236. Surface order in body-centered cubic alloys
    F. Schmid, Zeitschr. f. Phys. B 91, 77 (1993).
    doi:10.1007/BF01316711

  237. Monte Carlo Simulations of body centered cubic alloys
    F. Schmid, K. Binder, in "Metallic Alloys: Theoretical and Experimental Perspectives", 261, NATO-ASI Series, (1993).
    doi:10.1007/978-94-011-1092-1_29

  238. Monte Carlo investigation of interface roughening in a bcc-based binary alloy
    F. Schmid, K. Binder, Phys. Rev. B 46, 13565 (1992).
    doi:10.1103/PhysRevB.46.13565

  239. Rough interfaces in a bcc-based binary alloy
    F. Schmid, K. Binder, Phys. Rev. B 46, 13553 (1992).
    doi:10.1103/PhysRevB.46.13553

  240. Modelling order-disorder and magnetic transitions in iron-aluminium alloys
    F. Schmid, K. Binder, J. Phys.: Cond. Matter 4, 3569 (1992).
    doi:10.1088/0953-8984/4/13/019

  241. Lattice-distortion-mediated local jumps of hydrogen in niobium from diffuse neutron scattering
    H. Dosch, F. Schmid, P. Wiethoff, J. Peisl, Phys. Rev. B 46, 55 (1992).
    doi:10.1103/PhysRevB.46.55

Posted on

Friederike Schmid: Research

 

Lipid Membranes

All living things depend on membranes. Their basic structure is provided by lipid bilayers, which self-assemble spontaneously in water due to the amphiphilic character of lipid molecules - they contain both hydrophilic and hydrophobic units. In our group, we are interested in generic properties of such amphiphilic bilayers.

We have established a coarse-grained lipid model, which reproduces the main phases and phase transitions of phospholipid membranes at temperatures close to room temperature. As particular highlights, we have (i) recovered and investigated the mysterious modulated "ripple phase" in one-component membranes, which had intrigued researchers for many decades, and (ii) discovered and investigated nanoscale structures, examples of so-called "lipid rafts", in multicomponent membranes. Rafts are small domains in biomembranes which are believed to play a role for many cellular functions (see review article). We found that ripple states and nanoscale rafts are stabilized by very similar mechanisms: A propensity for global phase separation, which is suppressed by elastic interactions in the membrane. This is analyzed by computer simulations and elastic theories.

The same approach is used to study lipid-mediated interaction mechanisms membrane proteins. In the past, we have focused on a comparison between analytical predictions and simulation data for "proteins" that can be represented by stiff inclusions (see Figure). Currently, we investigate flexible amyloid-like peptides and their interaction with membranes. For more information, please contact Friederike Schmid.

Hybrid Field-based Simulation Methods for Polymers

The so-called 'self-consistent field' (SCF) theory is one of the most successful density functional theories fo inhomogeneous polymer systems, which allows to calculate the local structure of dense blends at an almost quantitative level (see review article).

We develop new hybrid simulation schemes for such systems that combine particle- and field-based representations of polymers, thus allowing to treat large parts of a system at the field level and zoom into certain areas in space with adaptive resolutions. Furthermore, we develop methods to combine different kinetic descriptions of polymeric fluids (diffusive Langevin and hydrodynamic Lattice-Boltzmann fields) in a consistent way. For more information, please contact
Friederike Schmid .

Self-Assembling Block Copolymers and Polymer Brushes

Melts of one or more kinds of polymers exhibit a wealth of diverse phases whose geometric properties make them interesting systems not only for condensed matter research, but for industrial applications, as well. Specifically, block copolymers made of chemically incompatible monomers (say, A and B) exhibit microphase separation, thus forming regular nanoscale patterns of varying complexity. In solvent, they self-assemble to nanoparticles or vesicles which can be used, e.g., as nanocontainers.

Among other, we study the influence of curvature on structure formation and pattern orientation in thin films and membranes, and we are interested in the effect of crosslinking for the stabilization of ordered structures. Furthermore, we use dynamic self-consistent field theory to study the kinetics of structure formation, e.g., in solutions containing amphiphilic block copolymers.

Another important application for polymers is to attach them to surfaces, thus modifying the surface properties. We are interested in the effect of polydispersity on the structure of such ''polymer brushes'', and on strategies to design smart surfaces that can be used as sensors and switches. For more information, please contact Friederike Schmid .

Memory Effects in Colloidal Systems

In soft matter, the separation of time scales is often incomplete and memory effects become important. We develop coarse-graining strategies for such situations, using the example of colloidal dispersions. We develop methods to reconstruct memory kernels in simple and complex fluids (e.g., electrolyte fluids). Our goal is to construct implicit solvent models that include memory effects and can be used for equilibrium and non-equilibrium simulations. In this context, we also develop algorithms for the efficient simulation of coupled generalized Langevin equations. For more information, please contact Friederike Schmid .

Interplay of Electrostatic and Hydrodynamic Interactions in Complex Fluids


The structure and dynamics of nano-objects (polymers, colloids) in solution is to a large extent governed by their interaction with the solvent. We aim at developing efficient methods for simulating nano-objects (polymers, colloids) that are dispersed in complex fluids, at equilibrium and nonequilibrium.

In particular, we are interested in studying electrolyte solvents, where the interplay of electrostatic interactions and hydrodynamic flows gives rise to a wealth of intriguing phenomena on a wide range of time and length scales. Physical problems of interest are the electrophoresis of charged polyelectrolytes or colloids in microchannels with different geometries and wall structurings, or the dielectrophoresis of polyelectrolytes or colloids in alternating electric fields. For more information, please contact Friederike Schmid .

Transport and Properties of Blood Proteins

Transport of nutrients to peripheral tissues and healing of damaged blood vessels are among the most important functions of blood. These functions involve the action of a series of proteins some of which are found in large amounts in the blood circulation. Fibrinogen is a multiprotein complex which, when activated, aggregate to form fibrin, a net-shaped molecular formation which is fundamental for the coagulation of blood following, i.e, a wound or when an extraneous body comes into contact with blood (i.e., graft implants). Thus, adsorption of fibrinogen on material surfaces play an important role in viability of those materials for implants.

In collaboration with experimental groups in the field, we use atomistic molecular dynamics simulations to characterize the adsorption process of fibrinogen on material surfaces. Another important molecule in the blood is albumin, which mediate transport of lipids and other molecules in blood. Albumin is a multidomain protein which provides several binding sites used to bind a range of different target molecules. Target molecules (lipids, drugs, etc.) bind to albumin which act as a transporter, and are then released where needed by blood circulation. Here we use molecular dynamics simulations to study the binding modes of several lipids to Albumin and the kinetics of lipid release/uptake. If you are interested, please contact Friederike Schmid or Giovanni Settanni.

Statistical Physics of Molecular Recognition


Selective interactions between biomolecules play an essential role in biological systems. Without selective recognition of antigens by corresponding antibodies, for example, the immune system could not work efficiently. One of the most salient features of molecular recognition is the fact that biomolecules often discriminate very accurately between many different but structurally similar interaction partners which are also present in a heterogeneous biological system.

Our studies aim at an understanding of the basic and universal mechanisms of recognition processes between biomolecules in an heterogeneous environment. In order to identify and investigate these basics mechanisms we develop idealised coarse-grained models. These models neglect those details which are particular for a specific system and are thus constructed to represent generic types of recognition processes. The thermostatic and dynamical properties of the models are then analysed with numerical and analytical methods from statistical physics. For more information, please contact  Friederike Schmid .

Posted on

Friederike Schmid: Teaching


Winter term 2024/2025

Current Teaching Activities

  • Advanced Statistical Physics
        (Monday 12-14, Lorentz room, Tuesday 10-12, Minkowsky)

Lecture Notes (mostly German)


Links to previous activities (selected)

Master Seminar: Biological Physics in SS 2018

Posted on

Arash Nikoubashman: Research

Microfluidics of Complex Liquids

Complex liquids under flow are ubiquitous in nature and technology, ranging from the flow of blood in our bodies to the flow of surfactants in enhanced oil recovery. We are in particular interested in studying and designing microfluidic devices for sorting and separating colloidal particles based on their size and deformability. Such systems are especially important for biotechnological applications, for example protein purification, cell sorting, and early diagnosis of pathogenes.
However, little is known about the underlying physics of complex systems under flow, impeding the design and fabrication of effective devices. Computer simulations play a substantial role in advancing this field, as they allow for microscopic insights and precise control over the system parameters, which is otherwise often challenging or even impossible in experiments. For more information, please contact Arash Nikoubashman .

Directed Assembly of Soft Matter

Imagine your book case could construct itself without you moving a single finger. What might sound like science fiction, happens in fact every day in nature on a microscopic scale, for example when cell membranes are formed or you wash your dishes. Designing and engineering such self-assembling materials is one of the major challenges in soft matter, and holds immense promise for the large-scale fabrication of novel nanomaterials and pharmaceutics. In our group, we study the fundamental principles of these intricate systems using advanced theoretical and computational methods. In particular, we focus on the role of external fields on self-assembly, and the possibility to guide the building blocks into well-specified structures. For more information, contact Arash Nikoubashman.

Semiflexible macromolecules in confinement

Confined macromolecules play an important role for a wide range of applications, such as the fabrication of nanoparticles for targeted drug delivery and for tailored nanomaterials. Further, these systems can give crucial insights into the inner workings of biological problems where confinement effects are crucial, such as the packaging of double-stranded DNA in bacteriophage capsids and the self-assembly of actin filaments in cells. Our simulations have revealed a complex interplay between the packing and bending of semiflexible chains, which leads, for example, to nematic ordering in the sphere interior and the emergence of intricate topological defects on the sphere surface. For more information, contact Kurt Binder or Arash Nikoubashman.

Posted on

Arash Nikoubashman: Publications

2023

  1. S.B. Kotkar, M.P. Howard, A. Nikoubashman, J.C. Conrad, R. Poling-Skutvik and J.C. Palmer: Confined dynamics in spherical polymer brushes, ACS Macro Lett. (2023)
  2. J. Wang, D.S. Devarajan, A. Nikoubashman and J. Mittal: Conformational properties of polymers at droplet interfaces as model systems for disordered proteins, ACS Macro Lett. 12, 1472 (2023)
  3. R. Datta, F. Berressem, F. Schmid, A. Nikoubashman and P. Virnau: Viscosity of flexible and semiflexible ring melts: Molecular origins and flow-induced segregation, Macromolecules 56, 7247 (2023)
  4. T. Yokoyama, Y. Kobayashi, N. Arai and A. Nikoubashman: Aggregation of amphiphilic nanocubes in equilibrium and under shear, Soft Matter 19, 6480 (2023)
  5. Y. Kanakubo, C. Watanabe, J. Yamamoto, N. Yanagisawa, H. Sakuta, A. Nikoubashman, M. Yanagisawa: Cell-sized confinements alter molecular diffusion in concentrated polymer solutions due to length-dependent wetting of polymers, ACS Materials Au 3, 442 (2023)
  6. M. Trömer, E.M. Zirdehi, A. Nikoubashman and A.H. Gröschel: Effect of surfactant selectivity on shape and inner morphology of triblock terpolymer microparticles, Macromol. Rapid Commun. 2023, 2300123 (2023)
  7. S. Rekhi, D.S. Devarajan, M.P. Howard, Y.C. Kim, A. Nikoubashman and J. Mittal: Role of strong localized vs. weak distributed interactions in disordered protein phase separation, J. Phys. Chem. B 127, 3829 (2023)
  8. A. Nikoubashman and M. Yanagisawa: Confinement-induced fractionation and liquid–liquid phase separation of polymer mixtures, Polymers 15, 511 (2023)

2022

  1. D.M. Scott, A. Nikoubashman, R.A. Register, R.D. Priestley and R.K. Prud'homme: Rapid precipitation of ionomers for stabilization of polymeric colloids, Langmuir 39, 570 (2022)
  2. D.S. Devarajan, S. Rekhi, A. Nikoubashman, Y.C. Kim, M.P. Howard and J. Mittal: Effect of charge distribution on the dynamics of polyampholytic disordered proteins, Macromolecules 55, 8987 (2022)
  3. D.J. Bauer, L. Stelzl and A. Nikoubashman: Single-chain and condensed-state behavior of hnRNPA1 from molecular simulations, J. Chem. Phys. 157, 154903 (2022)
  4. N. Petsev, A. Nikoubashman, F. Latinwo, F. Stillinger and P. Debenedetti: Crystal prediction via genetic algorithms in a model chiral system, J. Phys. Chem. B 126, 7771 (2022)
  5. Y. Kobayashi and A. Nikoubashman: Self-assembly of amphiphilic cubes in suspension, Langmuir 38, 10642 (2022)
    1. Featured on the cover of Langmuir (Volume 38, Issue 34)
  6. J.H. Appeldorn, S. Lemcke, T. Speck and A. Nikoubashman: Employing artificial neural networks to identify reaction coordinates and pathways for self-assembly, J. Phys. Chem. B 126, 5007 (2022)
  7. C.R. Bilchak, M. Jhalaria, S. Adhikari, J. Midya, Y. Huang, Z. Abbas, A. Nikoubashman, B.C. Benicewicz, M. Rubinstein and S.K. Kumar: Understanding gas transport in polymer-grafted nanoparticle assemblies, Macromolecules 55, 3011 (2022)
  8. J. Midya, S.A. Egorov, K. Binder and A. Nikoubashman: Wetting transitions of polymer solutions: Effects of chain length and chain stiffness, J. Chem. Phys. 156, 044901 (2022)

2021

  1. Y.M. Wani, P.G. Kovakas, A. Nikoubashman and M.P. Howard: Diffusion and sedimentation in colloidal suspensions using multiparticle collision dynamics with a discrete particle model, J. Chem. Phys. 156, 024901 (2022)
  2. A. Milchev, S.A. Egorov, J. Midya, K. Binder and A. Nikoubashman: Blends of Semiflexible Polymers: Interplay of Nematic Order and Phase Separation , Polymers 13, 2270 (2021)
  3. S. Adhikari, A. Nikoubashman, L. Leibler, M. Rubinstein, J. Midya and S.K. Kumar: Gas transport in interacting planar brushes, ACS Polymers Au 1, 39 (2021)
  4. R. Chen, S.B. Kotkar, R. Poling-Skutvik, M.P. Howard, A. Nikoubashman, J.C. Conrad and J.C. Palmer: Nanoparticle dynamics in semidilute polymer solutions: Rings versus linear chains, J. Rheol. 65, 745 (2021)
  5. F. Berressem, C. Scherer, D. Andrienko and A. Nikoubashman: Ultra-coarse-graining of homopolymers in inhomogeneous systems, J. Phys.: Condens. Matter 33, 254002 (2021)
  6. F. Berressem and A. Nikoubashman: BoltzmaNN: Predicting effective pair potentials and equations of state using neural networks, J. Chem. Phys. 154, 124123 (2021) - webtool - git repository
  7. A. Nikoubashman: Ordering, phase behavior, and correlations of semiflexible polymers in confinement, J. Chem. Phys. 154, 090901 (2021)
  8. A. Steinhaus, D. Srivastva, X. Qiang, S. Franzka, A. Nikoubashman and A.H. Gröschel: Controlling Janus nanodiscs topology through ABC triblock terpolymer / homopolymer blending in 3D confinement, Macromolecules 54, 1224 (2021)
  9. S.A. Egorov, A. Milchev, A. Nikoubashman and K. Binder: Phase separation and nematic order in lyotropic solutions: Two types of polymers with different stiffness in a common solvent, J. Phys. Chem. B 125, 956 (2021)

2020

  1. C.R. Bilchak, M. Jhalaria, Y. Huang, Z. Abbas, J. Midya, F.M. Benedetti, D. Parisi, W. Egger, M. Dickmann, M. Minelli, F. Doghieri, A. Nikoubashman, C.J. Durning, D. Vlassopoulos, J. Jestin, Z.P. Smith, B.C. Benicewicz, M. Rubinstein, L. Leibler and S.K. Kumar: Tuning selectivities in gas separation membranes based on polymer-grafted nanoparticles, ACS Nano 14, 17174 (2020)
  2. Y. Kobayashi, N. Arai and A. Nikoubashman: Structure and shear response of Janus colloid-polymer mixtures in solution, Langmuir 36, 14214 (2020)
  3. A. Milchev, S.A. Egorov, J. Midya, K. Binder and A. Nikoubashman: Entropic unmixing in nematic blends of semiflexible polymers, ACS Macro Lett. 9, 1779 (2020)
  4. J. Midya, M. Rubinstein, S.K. Kumar and A. Nikoubashman: Structure of polymer-grafted nanoparticle melts, ACS Nano 14, 15505 (2020)
  5. M.P Howard and A. Nikoubashman: Stratification of polymer mixtures in drying droplets: Hydrodynamics and diffusion, J. Chem. Phys. 153, 054901 (2020)
  6. K. Binder, S.A. Egorov, A. Milchev and A. Nikoubashman: Understanding the properties of liquid-crystalline polymers by computational modeling, J. Phys. Mater. 3, 032008 (2020)
  7. T.I. Morozova, V.E. Lee, N. Bizmark, S.S. Datta, R.K. Prud'homme, A. Nikoubashman and R.D. Priestley: In silico design enables the rapid production of surface-active colloidal amphiphiles, ACS Central Science 6, 166 (2020)

2019

  1. Y. Kobayashi, N. Arai and A. Nikoubashman: Structure and dynamics of amphiphilic Janus spheres and spherocylinders under shear, Soft Matter 16, 476 (2020)
  2. T.I. Morozova and A. Nikoubashman: Surface activity of soft polymer colloids, Langmuir 35, 16907 (2019)
  3. L.B. Weiss, C.N. Likos and A. Nikoubashman: Spatial demixing of ring and chain polymers in pressure-driven flow, Macromolecules 52, 7858 (2019)
  4. A. Nikoubashman and T. Ihle: Transport coefficients of self-propelled particles: Reverse perturbations and transverse current correlations, Phys. Rev. E 100, 042603 (2019)
  5. A. Steinhaus, D. Srivastva, A. Nikoubashman and A.H. Gröschel: Janus nanostructures from ABC/B triblock terpolymer blends, Polymers 11, 1107 (2019)
  6. J. Midya, S.A. Egorov, K. Binder and A. Nikoubashman: Phase behavior of flexible and semiflexible polymers in solvents of varying quality, J. Chem. Phys. 151, 034902 (2019)
    1. 2019 Editor's Choice award of The Journal of Chemical Physics
  7. A. Milchev, A. Nikoubashman and K. Binder: The smectic phase in semiflexible polymer materials: A large scale molecular dynamics study, Comput. Mater. Sci. 166, 230 (2019)
  8. M.P. Howard, A. Nikoubashman and J.C. Palmer: Modeling hydrodynamic interactions in soft materials with multiparticle collision dynamics, Curr. Opin. Chem. Eng. 23, 34 (2019)
  9. A. Nikoubashman and F. Schmid: The molecular Lego movie, Nature Chemistry (News and Views) 11, 298 (2019)
  10. J. Midya, Y. Cang, S.A. Egorov, K. Matyjaszewski, M.R. Bockstaller, A. Nikoubashman and G. Fytas: Disentangling the role of chain conformation on the mechanics of polymer tethered particle materials, Nano Lett. 19, 2715 (2019)
  11. W. Liu, J. Midya, M. Kappl, H.-J. Butt and A. Nikoubashman: Segregation in drying binary colloidal droplets, ACS Nano 13, 4972 (2019)
  12. M.P. Howard, T.M. Truskett and A. Nikoubashman: Cross-stream migration of a Brownian droplet in a polymer solution under Poiseuille flow, Soft Matter 15, 3168 (2019)
  13. N. Li, A. Nikoubashman and A.Z. Panagiotopoulos: Self-assembly of polymer blends and nanoparticles through rapid solvent exchange, Langmuir 35, 3780 (2019)

2018

  1. T.I. Morozova, V.E. Lee, A.Z. Panagiotopoulos, R.K. Prud'homme, R.D. Priestley and A. Nikoubashman: On the stability of polymeric nanoparticles fabricated through rapid solvent mixing, Langmuir 35, 709 (2019)
  2. R. Chen, R. Poling-Skutvik, M.P. Howard, A. Nikoubashman, S.A. Egorov, J.C. Conrad and J.C. Palmer: Influence of polymer flexibility on nanoparticle dynamics in semidilute solutions, Soft Matter 15, 1260 (2018)
  3. A. Milchev, S.A. Egorov, K. Binder and A. Nikoubashman: Nematic order in solutions of semiflexible polymers: Hairpins, elastic constants, and the nematic-smectic transition, J. Chem. Phys. 149, 174909 (2018)
    1. 2018 Editor's Choice award of The Journal of Chemical Physics
  4. M.P. Howard, W.F. Reinhart, T. Sanyal, M.S. Shell, A. Nikoubashman and A.Z. Panagiotopoulos: Evaporation-induced assembly of colloidal crystals, J. Chem. Phys. 149, 094901 (2018)
    1. 2018 Editor's Choice award of The Journal of Chemical Physics
  5. N. Li, A. Nikoubashman and A.Z. Panagiotopoulos: Multi-scale simulations of polymeric nanoparticle aggregation during rapid solvent exchange, J. Chem. Phys. 149, 084904 (2018)
    1. 2018 Editor's Choice award of The Journal of Chemical Physics
  6. M.R. Khadilkar and A. Nikoubashman: Self-assembly of semiflexible polymers confined to thin spherical shells, Soft Matter 14, 6903 (2018)
  7. D. Srivastva and A. Nikoubashman: Flow Behavior of Chain and Star Polymers and Their Mixtures, Polymers 10, 599 (2018)
  8. L.S. Grundy, V.E. Lee, N. Li, C. Sosa, W.D. Mulhearn, R. Liu, R.A. Register, A. Nikoubashman, R.K. Prud'homme, A.Z. Panagiotopoulos and R.D. Priestley: Rapid Production of Internally Structured Colloids by Flash Nanoprecipitation of Block Copolymer Blends, ACS Nano 12, 4660 (2018)
  9. M.P. Howard, A.Z. Panagiotopoulos and A. Nikoubashman: Efficient mesoscale hydrodynamics: Multiparticle collision dynamics with massively parallel GPU acceleration, Comput. Phys. Commun. 230, 10 (2018)
  10. A. Milchev, S.A. Egorov, A. Nikoubashman and K. Binder: Adsorption and structure formation of semiflexible polymers on spherical surfaces, Polymer 145. 463 (2018)
  11. A. Milchev, S.A. Egorov, D.A. Vega, K. Binder and A. Nikoubashman: Densely packed semiflexible macromolecules in a rigid spherical capsule, Macromolecules 51, 2002 (2018)
  12. R. Chen, R. Poling-Skutvik, A. Nikoubashman, M.P. Howard, J.C. Conrad and J.C. Palmer: Coupling of nanoparticle dynamics to polymer center-of-mass motion in semidilute polymer solutions, Macromolecules 51, 1865 (2018)
  13. T.I. Morozova and A. Nikoubashman: Coil-globule collapse of polystyrene chains in tetrahydrofuran-water mixtures, J. Phys. Chem. B 122, 2130 (2018)

2017

  1. L. Weiss, A. Nikoubashman and C.N. Likos: Topology-sensitive microfluidic filter for polymers of varying stiffness, ACS Macro Lett. 6, 1426 (2017)
  2. N. Li, A. Nikoubashman and A.Z. Panagiotopoulos: Controlled production of patchy particles from the combined effects of nanoprecipitation and vitrification, Soft Matter 13, 8433 (2017)
  3. A. Nikoubashman and M.P. Howard: Equilibrium dynamics and shear rheology of semiflexible polymers in solution, Macromolecules 50, 8279 (2017)
  4. O. Nikoubashman, A. Nikoubashman, M. Büsen and M. Wiesmann: Necessary catheter diameters for mechanical thrombectomy with ADAPT, Am. J. Neuroradiol. 38, 2277 (2017)
  5. M.P. Howard, A. Nikoubashman and A.Z. Panagiotopoulos: Stratification in drying polymer-polymer and colloid-polymer mixtures, Langmuir 33, 11390 (2017)
  6. A. Nikoubashman, D.A. Vega, K. Binder and A. Milchev: Semiflexible polymers in spherical confinement: bipolar orientational order versus tennis ball states, Phys. Rev. Lett. 118, 217803 (2017)
  7. A. Milchev, S.A. Egorov, A. Nikoubashman and K. Binder: Conformations and orientational ordering of semiflexible polymers in spherical confinement, J. Chem. Phys. 146, 194907 (2017)
  8. M.P. Howard, A. Nikoubashman and A.Z. Panagiotopoulos: Stratification dynamics in drying colloidal mixtures, Langmuir 33, 3685 (2017)
  9. N. Li, A.Z. Panagiotopoulos and A. Nikoubashman: Structured nanoparticles from the self-assembly of polymer blends through rapid solvent exchange, Langmuir 33, 6021 (2017)
    1. Featured on the cover of Langmuir (Volume 33, Issue 24)
  10. M. Montes-Saralegui, G. Kahl and A. Nikoubashman: On the applicability of density dependent effective interactions in cluster-forming systems, J. Chem. Phys. 146, 054904 (2017)

2016

  1. A. Nikoubashman, A. Milchev and K. Binder: Dynamics of single semiflexible polymers in dilute solution, J. Chem. Phys. 145, 234903 (2016)
  2. M.P. Howard, A. Gautam, A.Z. Panagiotopoulos and A. Nikoubashman: Axial dispersion of Brownian colloids in microfluidic channels, Phys. Rev. Fluids 1, 044203 (2016)
  3. A. Nikoubashman: Self-assembly of colloidal micelles in microfluidic channels, Soft Matter 13, 222 (2017)
  4. O. Nikoubashman, J.P. Alt, A. Nikoubashman, M. Büsen, S. Heringer, C. Brockmann, M.-A. Brockmann, M. Müller, A. Reich and M. Wiesmann: Optimizing endovascular stroke treatment: removing the microcatheter before clot retrieval with stent-retrievers increases aspiration flow, J. NeuroIntervent. Surg. (2016)
  5. M.P. Howard, J.A. Anderson, A. Nikoubashman, S.C. Glotzer and A.Z. Panagiotopoulos: Efficient neighbor list calculation for molecular simulation of colloidal systems using graphics processing units, Comput. Phys. Commun. 203, 45 (2016)

2015

  1. A. Nikoubashman, V.E. Lee, C. Sosa, R.K. Prud'homme, R.D. Priestley and A.Z. Panagiotopoulos: Directed assembly of soft colloids through rapid solvent exchange, ACS Nano 10, 1425 (2016)
  2. A. Nikoubashman, N.A. Mahynski, B. Capone, A.Z. Panagiotopoulos and C.N. Likos: Coarse-graining and phase behavior of model star polymer-colloid mixtures in solvents of varying quality, J. Chem. Phys. 143, 243108 (2015)
  3. M. P. Howard, A.Z. Panagiotopoulos and A. Nikoubashman: Inertial and viscoelastic forces on rigid colloids in microfluidic channels, J. Chem. Phys. 142, 224908 (2015)
  4. A. Nikoubashman, E. Bianchi and A. Z. Panagiotopoulos: Self-assembly of Janus particles under shear, Soft Matter 11, 3767 (2015)
    1. Featured on the cover of Soft Matter (Volume 11, Issue 19)
    2. Selected as a 2015 Soft Matter Hot Paper

2014

  1. M. Montes-Saralegui, A. Nikoubashman and G. Kahl: Merging and hopping processes in systems of ultrasoft, cluster forming particles under compression, J. Chem. Phys. 141, 124908 (2014)
  2. A. Nikoubashman, R.L. Davis, B.T. Michal, P.M. Chaikin, R.A. Register and A.Z. Panagiotopoulos: Thin Films of Homopolymers and Cylinder-Forming Diblock Copolymers under Shear, ACS Nano 8, 8015 (2014)
  3. A. Nikoubashman and A.Z. Panagiotopoulos: Effect of solvophobic block length on critical micelle concentration in model surfactant systems, J. Chem. Phys. 141, 041101 (2014)
  4. K. Mueller, N. Osterman, D. Babic, C.N. Likos, J. Dobnikar and A. Nikoubashman: Pattern formation and coarse-graining in 2D colloids driven by multiaxial magnetic fields, Langmuir 30, 5088 (2014)
  5. A. Nikoubashman, N.A. Mahynski, A.H. Pirayandeh and A.Z. Panagiotopoulos: Flow-Induced Demixing of Polymer-Colloid Mixtures in Microfluidic Channels, J. Chem. Phys. 140, 094903 (2014)
    1. 2014 Editor's Choice award of The Journal of Chemical Physics
  6. A. Nikoubashman, R.A. Register and A.Z. Panagiotopoulos: Sequential domain realignment driven by conformational asymmetry in block copolymer thin films, Macromolecules 47, 1193 (2014)
  7. A. Chremos, A. Nikoubashman and A.Z. Panagiotopoulos: Flory-Huggins parameter, from binary mixtures of Lennard-Jones particles to block copolymer melts, J. Chem. Phys. 140, 054909 (2014)

2013

  1. A. Nikoubashman, R.A. Register and A.Z. Panagiotopoulos: Simulations of shear-induced morphological transitions in block copolymers, Soft Matter 9, 9960 (2013)
  2. A. Nikoubashman, R.A. Register and A.Z. Panagiotopoulos: Self-Assembly of Cylinder-Forming Diblock Copolymer Thin Films, Macromolecules 46, 6651 (2013)
  3. M. Montes-Saralegui, A. Nikoubashman and G. Kahl: Hopping and diffusion of ultrasoft particles in cluster crystals in the explicit presence of a solvent, J. Phys.: Condens. Matter 25, 195101 (2013)
  4. A. Nikoubashman, C.N. Likos and G. Kahl: Computer simulations of colloidal particles under flow in microfluidic channels, Soft Matter 9, 2603 (2013)
    1. Featured on the cover of Soft Matter (Volume 9, Issue 9)

2012

  1. A. Nikoubashman, J.-P. Hansen and G. Kahl: Mean-field theory of the phase diagram of ultrasoft, oppositely charged polyions in solution, J. Chem. Phys. 137, 094905 (2012)
  2. A. Nikoubashman, G. Kahl and C. N. Likos: Flow quantization and nonequilibrium nucleation of soft crystals, Soft Matter 8, 4121 (2012)

2011

  1. A. Nikoubashman, G. Kahl and C. N. Likos: Cluster Crystals under Shear, Phys. Rev. Lett. 107, 068302 (2011)
    1. Press release by the Vienna University of Technology and the University of Vienna: Flowing Structures in Soft Crystals
    2. Featured in the online edition of the Austrian newspaper Der Standard
  2. R. Raccis, A. Nikoubashman, M. Retsch, U. Jonas, K. Koynov, H.-J. Butt, C.N. Likos and G. Fytas: Confined Diffusion in Periodic Porous Nanostructures, ACS Nano 5, 4607 (2011)

2010

  1. A. Nikoubashman and C.N. Likos: Flow-induced polymer translocation through narrow and patterned channels, J. Chem. Phys. 133, 074901 (2010)
    1. Featured on the cover of The Journal of Chemical Physics (Volume 133, Issue 7)
    2. Selected as a research-highlight of The Journal of Chemical Physics
    3. Press release by The Journal of Chemical Physics: Molecules delivering drugs as they walk
  2. A. Nikoubashman and C.N. Likos: Branched polymers under shear, Macromolecules 43, 1610-1620 (2010)
  3. A. Nikoubashman and C.N. Likos: Self-assembled structures of Gaussian nematic particles, J. Phys.: Condens. Matter 22, 104107 (2010)
  4. V. Dicken, B. Lindow, L. Bornemann, J. Drexl, A. Nikoubashman and H.O. Peitgen: Realtime image recognition of body parts scanned in computed tomography datasets, IJCARS 5, 527 (2010)
Posted on

Prof. Dr. Peter Virnau

AddressStaudingerweg 9
55128 Mainz
Room03-517
Phone+49 6131-39-20493
Fax+49 6131-39-20496
E-Mailvirnau @ uni-mainz.de
Posted on