3. Navigationsebene – People

Peter Virnau: Publications

Habilitation, PhD and Master Thesis

  • Molekulare Knoten – Computersimulationen zu Selbstverschlaufungen in Polymeren, DNA und Proteinen

Habilitationsschrift (2016), Institut für Physik, Johannes Gutenberg-Universität Mainz.

  • Monte-Carlo-Simulationen zum Phasen- und Keimbildungsverhalten von Polymerlösungen

Dissertation (2003), Institut für Physik, Johannes Gutenberg-Universität Mainz.

  • Development of a Magneto-Optical Kerr Probe for Thin Film Characterization

Master thesis (1999), Department of Physics, Louisiana State University, Baton Rouge, USA.

 

Editorial activities

E2.  Heterogeneous nucleation and microstructure formation: Steps towards a system and scale
bridging understanding

H. Emmerich, P. Virnau, G. Wilde, R. Spatschek (eds)
Physical Journal – Special Topics, volume 223 (2014).

E1.  Computer Simulations on Graphics Processing Units
M. Weigel, A. Arnold, P. Virnau (eds)
European Physical Journal – Special Topics, volume 210 (2012).

 

Peer-reviewed publications

94.  Free energy barriers for crystal nucleation from fluid phases
       P. Koss, A. Statt, P. Virnau, K. Binder
       Phys. Rev. E. 96, 042609 (2017)

93.  Are there knots in chromosomes?
       J.Siebert, A. Kivel, L. Atkinson, T. Stevens, E. Laue, P. Virnau
       Polymers 9, 317 (2017).

92.  Estimation of the critical behaviour in an active colloidal system with Vicsek-like interactions
       B. Trefz, J. Siebert, T. Speck, K. Binder, P. Virnau
       Chem. Phys. 146, 074901 (2017).

91.  Phase behaviour of active Brownian disks, spheres and dimers
       J. Siebert, J. Letz, T. Speck, P. Virnau
       Soft Matter 13, 1020 (2017).

90.  Entropic Interactions between two knots on a semiflexible polymer
       D. Richard, S. Stalter, J. Siebert, F. Rieger, B. Trefz, P. Virnau
       Polymers 9, 55 (2017).

89.  Monte Carlo study of knots in long double-stranded DNA chains
       F. Rieger, P. Virnau
       PLoS Comp. Biol. 12, e1005029 (2016).

88.  Overview: Understanding nucleation phenomena from simulations of lattice gas models
       K. Binder, P. Virnau
       Chem. Phys. 145, 211701 (2016).

87.  Semiflexible polymers under good solvent conditions interacting with repulsive walls
       S.A. Egorov, A. Milchev, P. Virnau, K. Binder
       J. Chem. Phys. 144, 174902 (2016).

86.  Knots in finite memory walks
       E. Horwath, N. Clisby, P. Virnau
       Phys.: Conf. Ser. 750, 012010 (2016).

85.  The ensemble switch method and related approaches to obtain interfacial free energies
        between coexisting phases from simulations: a brief review
        P. Virnau, F. Schmitz, K. Binder
        Molecular Simulation 42 SI, 549 (2016).

84.  Activity mediated phase separation: Can we understand phase behaviour of the nonequilibrium
       problem from an equilibrium approach
       B. Trefz, S.K. Das, S.A. Egorov, P. Virnau, K. Binder
       Chem. Phys. 114, 144902 (2016).

83.  A new insight into the isotropic-nematic phase transition in lyotropic solutions of semiflexible
       polymers: density-functional theory tested by molecular dynamics
S.A. Egorov, A. Milchev, P. Virnau, K. Binder

      Soft Matter 12, 4944 (2016).

82.   Crystal nuclei in melts: a Monte Carlo simulation of a model for attractive colloids
        A. Statt, P. Virnau, K. Binder
        Mol. Phys. 113, 2556 (2015).

81.  Scaling behaviour of topologically constrained polymer rings in a melt
        B. Trefz, P. Virnau
        Phys.: Condens. Matter 27, 354110 (2015).

80.  The ensemble switch method for computing interfacial tensions
        F. Schmitz, P. Virnau
Chem. Phys. 142, 144108 (2015).

79.  Finite-size effects on liquid-solid phase coexistence and the estimation of crystal
nucleation barriers
       A. Statt, P. Virnau, K. Binder
       Phys. Rev. Lett. 114, 026101 (2015).

78.  Sequence determines degree of knottedness in a coarse-grained protein model
       Wüst, D. Reith, P. Virnau
       Phys. Rev. Lett. 114, 028102 (2015).
       Chosen as Editor’s suggestion.

77.  Anisotropic interfacial tension, contact angles, and line tensions: A graphics-processing-unit-
based Monte Carlo study of the Ising model
       B.J. Block, S. Kim, P. Virnau, K. Binder
       Phys. Rev. E 90, 062106 (2014).

76.  Perspective: The Asakura Oosawa model: A colloid prototype for bulk and interfacial
phase behaviour
       K. Binder, P. Virnau, A. Statt
Chem. Phys. 141, 140901 (2014).

75.  Logarithmic finite-size effects on interfacial free energies: Phenomenological theory
and Monte Carlo studies
       F. Schmitz, P. Virnau, K. Binder
       Phys. Rev. E 90, 012128 (2014).

74.   Determination of origin and magnitude of logarithmic finite-size effects on interfacial tension:
role of interfacial fluctuations and domain breathing (erratum)
        F. Schmitz, P. Virnau, K. Binder
        Phys. Rev. Lett. 112, 239902 (2014).

73.   How molecular knots can pass through each other
        B. Trefz, J. Siebert, P. Virnau
        Proc. Nat. Acad. Sci: USA 111, 7948 (2014).

72.   Phase behaviour of active swimmers in depletants: Molecular dynamics and integral
        equation theory
        S.K. Das, S. Egorov, B. Trefz, P. Virnau, K. Binder
        Phys. Rev. Lett. 112, 198301 (2014).

71.  Determination of the origin and magnitude of logarithmic finite-size effects on interfacial tension:
role of interfacial fluctuations and domain breathing
       F. Schmitz, P. Virnau, K. Binder
       Phys. Rev. Lett. 112, 125701 (2014).

70.  Computer simulation of heterogeneous nucleation of colloidal crystals at planar walls
       B.J. Block, D. Deb, F. Schmitz, A. Statt, A. Tröster, A. Winkler, T. Zykova-Timan, P. Virnau, K. Binder
       EPJ-ST 223, 347 (2014).

69.  Structure formation of polymeric building blocks: complex polymer architectures
       K. Binder, H.-J. Butt, G. Floudas et al.
       Adv. Poly. Sci. 260, 115-210 (2014).

68.  Polymer dynamics in polymer-solid in a polymer-solid interphase: Molecular dynamics
simulations  of  1,4-polybutadien at a graphite surface
       M. Solar, L. Yelash, P. Virnau, K. Binder, W. Paul
Soft Mater. 12, S80-S89 (2014).

67.  Stick-slip motion and plastic flow of a two-dimensional colloidal crystal confined to moving
corrugated rigid boundaries
       D. Wilms, P. Virnau, K. Binder
Mol. Phys. 111, 22 (2013).

66.  Computer simulations of structure, dynamics, and phase behaviour of colloidal
fluids in confined geometry and under shear
       A.Winkler, D. Winter, P. Chaudhuri, A. Statt, P. Virnau, J. Horbach, K. Binder
       EPJ-ST 222, 2787 (2013).

65.  Effects of boundaries on structure formation in low-dimensional colloid model
systems near the liquid-solid-transition in equilibrium and in external fields and under shear
       Deutschländer, K. Franzrahe, B. Heinze et al.
       EPJ-ST 222, 2973 (2013).

64.  Monte Carlo tests of nucleation concepts in the lattice gas model
       F. Schmitz, P. Virnau, K. Binder
       Phys. Rev. E 87, 053302 (2013).

63.  Influence of chain stiffness on knottedness in single polymers
       P. Virnau, F. Rieger, D. Reith
       Biochem. Soc. Trans. 41, 528 (2013).

62.  Phase transitions and phase equilibria in spherical confinement
       A.Winkler, A. Statt, P. Virnau, K. Binder
       Phys. Rev. E 87, 032307 (2013).

61.  Hydrodynamic mechanisms of spinodal decomposition in confined colloid-polymer mixtures:
Amultiparticle collision dynamics study /strong>      A. Winkler, P. Virnau, K. Binder, R.G. Winkler, G. Gompper
Chem. Phys. 138, 054901 (2013).

60. Beyond the van der Waals loop: What can be learned from simulating Lennard-Jones fluids inside
the region of phase coexistence
      K. Binder, B.J. Block, P. Virnau, A. Tröster
Am. J. Phys. 80, 1099 (2012).

59.  Motion, relaxation dynamics and diffusion processes in two-dimensional colloidal crystals
confined between walls
   D. Wilms, P. Virnau, I.K. Snook, K. Binder
Phys. Rev. E 86, 051404 (2012).

58. Controlling the wetting properties of the Asakura-Oosawa model and applications to spherical
confinement
      A. Statt, A. Winkler, P. Virnau, K. Binder
Phys. Condens. Matter 24, 464122 (2012).

57.    Effects of confinement and external fields on structure and transport
in colloidal dispersions in reduced dimensionality
 D. Wilms, S. Deutschländer, U. Siems, K. Franzrahe, P. Henseler, P. Keim, N. Schwierz, P. Virnau,
K. Binder, G. Maret, P. Nielaba
Phys. Condens. Matter 24, 464119 (2012).

56. Confinement-induced screening of hydrodynamic interactions and spinodal decomposition:
Multiscale simulations of colloid-polymer mixtures
      A. Winkler, P. Virnau, K. Binder, R.G. Winkler, G. Gompper
EPL 100, 46003 (2012).

55. Accelerated GPU simulation of compressible flow by discontinuous evolution garlerkin method
      B.J. Block, M. Lukacova-Medvidova, P. Virnau, L. Yelash
EPJ ST 210, 119 (2012).

54Methods to compute pressure and wall tension in fluids containing hard particles
      D. Deb, D. Wilms, A. Winkler, P. Virnau, K. Binder
Int. J. Mod. Phys. C 23, 1240011 (2012).

53.  Langevin dynamics simulations of a two-dimensional colloidal crystal under
confinement and shear
      D. Wilms, P. Virnau, S. Sengupta, K. Binder
Phys. Rev. E 85, 061406 (2012).

52. Effective stiffening of DNA due to nematic ordering causes DNA molecules
packed in phage  capsids to preferentially form torus knots
D.Reith, P. Cifra, A. Stasiak, P. Virnau
Nucl. Acids. Res. 40, 5129 (2012).

51. Computer simulation studies of chain dynamics in polymer brushes
      D. Reith, A. Milchev, P. Virnau, K. Binder
Macromolecules 45, 4381 (2012).

50. Three-step decay of time correlations at polymer-solid interfaces
      L. Yelash, P. Virnau, K. Binder, W. Paul
EPL 98, 28006 (2012).

49. Spinodal decomposition of polymer solutions: molecular dynamics simulations
of the two-dimensional case
      D. Reith, K. Bucior, L. Yelash, P. Virnau, K. Binder
Phys. Condens. Matter 24, 115102 (2012).

48.  Numerical approaches to determine the interface tension of curved interfaces
from free energy calculations
       A. Troester, M. Oettel, B. Block, P. Virnau, K. Binder
Chem. Phys. 136, 064709 (2012).47

 47. Active non-linear micro-rheology in a glass-forming Yukawa fluid
       D. Winter, J. Horbach, P. Virnau, K. Binder
Phys. Rev. Lett. 108, 028303 (2012).

 46. Structures and folding pathways of topologically knotted proteins
       P. Virnau, A. Mallam, S. Jackson
       Topical Review in J. Phys. Condens. Matter 23, 033101 (2011).

45. Computer simulations and coarse-grained molecular models predicting
the equation of state of polymer solutions
      K. Binder, B. Mognetti, W. Paul, P. Virnau, L. Yelash
Adv. Polym. Sci. 238, 329 (2011).

44. GPU based molecular dynamics simulations of polymer rings in concentrated solution:
structure and scaling
      D. Reith, L.A. Mirny, P. Virnau
Prog. Theor. Phys. Supp. 191, 135 (2011).

43. Anomalous structure and scaling of ring polymer brushes
      D. Reith, A. Milchev, P. Virnau, K. Binder
EPL 95, 28003 (2011)..  

42. Spurious character of singularities associated with phase transitions in cylindrical pores
      K. Binder, P. Virnau, D. Wilms, A. Winkler
Eur. Phys. J – Spec Top 197, 227 (2011).

41. Hard sphere fluids confined between soft repulsive walls: A comparative study using Monte Carlo

and density functional methods
D. Deb, A. Winkler, M.H. Yamani, M. Oettel, P. Virnau, K. Binder
Chem. Phys. 134, 214706 (2011).

40. Monte Carlo simulations of a single polystyrene chain in spherical confinement
      D. Reith, P. Virnau
Comp. Phys. Commun. 182, 1945 (2011)

39. Monte Carlo simulations of the 2d-Ising model in the geometry of a long stripe
      D. Wilms, A. Winkler, P. Virnau, K. Binder
Comp. Phys. Commun. 182, 1892 (2011).

38.  Confined binary two-dimensional colloidal crystals: Monte Carlo simulation of crack formation
       Medina, P. Virnau, K. Binder
Phys. Condens. Matter 23, 035105 (2011).

37.  Molecular simulation of polymer blends and melts: Methods, phase behaviour, interfaces
and and surfaces
       P. Virnau, K. Binder, H. Heinz, T. Kreer, M. Müller  Vol. 1, 1 in Encyclopedia of Polymer Blends,
A.I. Isayev (ed.), Wiley-VCH, Weinheim (2010).

36.  Rounding of phase transitions in cylindrical pores
       D. Wilms, A. Winkler, P. Virnau, K. Binder
Phys. Rev. Lett. 105, 045701 (2010).

35.  Curvature dependence of surface free energy of liquid drops and bubbles: A simulation study
        B.J. Block, S.K. Das, M. Oettel, P. Virnau, K. Binder
Chem. Phys. 133, 154702 (2010),
als Research Highlight ausgezeichnet.

34. Capillary condensation in cylindrical pores: Monte Carlo study of the interplay of surface
and finite size effects
      A. Winkler, D. Wilms, P. Virnau, K. Binder
Chem. Phys. 133, 164702 (2010).

33. Finite-size scaling analysis of the anisotropic critical behavior of the two-dimensional
Ising model under shear
      D. Winter, P. Virnau, J. Horbach, K. Binder
EPL 91, 60002 (2010).

32. A slow process in confined polymer melts: layer exchange dynamics at a polymer solid interface
      Yelash, P. Virnau, K. Binder, W. Paul,
Phys. Rev. E 82, 050801 (2010)

31. Multi-GPU Accelerated Monte Carlo Simulation of the 2D Ising Model
      B.J. Block, P. Virnau, T. Preis
Comp. Phys. Commun. 181, 1549 (2010).

30.  A Stevedore’s protein knot
       Bölinger, J. Sulkowska, H.-P. Hsu, L. Mirny, M. Kardar, J.Onuchic, P. Virnau
PLoS Comp. Biol. 6, e1000731 (2010).

29.  Conformational properties of polymer mushrooms under spherical and cylindrical confinement
Wang, P. Virnau, K. Binder
Macromolecular Theory and Simulations 19, 258 (2010).

28. A combined molecular dynamics and Monte Carlo study of the approach towards phase
 separation in colloid-polymer mixtures
      Zausch, J. Horbach, P. Virnau, K. Binder
Phys. Condens. Matter 22, 104120 (2010).27. 

27. Implementation and performance analysis of bridging Monte Carlo moves for off-lattice single
chain polymers in globular states
      D. Reith, P. Virnau
Comp. Phys. Commun. 181, 800 (2010) 

26.  Monte Carlo test of the classical theory for heterogeneous nucleation barriers
       A. Winter, P. Virnau, K. Binder
Phys. Rev. Lett. 103, 225703 (2009).

25.  Methods to extract interfacial free energies of flat and curved interfaces from computer
simulations
       P. Schrader, P. Virnau, D. Winter, T, Zykova-Timan, K. Binder
Eur. Phys. J. – Spec. Top. 177, 103 (2009).

24. Heterogeneous nucleation at a wall near a wetting transition:
Monte Carlo test of the classical theory
      A. Winter, P. Virnau, K. Binder
Phys. Condens. Matter 21, 464118 (2009).

23. Accelerated fluctuation analysis by graphic cards and complex pattern formation in Econophysics
      T. Preis, P. Virnau, W. Paul, J.J. Schneider
New J. Phys. 11, 093024 (2009).

22. GPU accelerated Monte Carlo simulation of the 2D and 3D Ising model
      T. Preis, P. Virnau, W. Paul, J.J. Schneider
Comp. Phys. 228, 4468 (2009).

21. Simulation of vapor-liquid coexistence in finite volumes: A method to compute the surface free
energy of droplets
      Schrader, P. Virnau, K. Binder
Phys. Rev. E 79, 061104 (2009).

20. Coarse-graining dipolar interactions in simple fluids and polymer solutions:
Monte Carlo studies of the phase behavior
      B.M. Mognetti, P. Virnau, L. Yelash, K. Binder
Phys. Chem. Chem. Phys. 11, 1923 (2009).

19. Statics and dynamics of colloid polymer mixtures near their critical point of
      Phase separation: a computer simulation study
      J. Zausch, P. Virnau, J. Horbach, K. Binder
Chem. Phys. 130, 064906 (2009)

18.  >Coarse-grained models for fluids and their mixtures: Comparison of Monte Carlo
studies of their phase behavior with perturbation theory and experiment
       B.M. Mognetti, P. Virnau, L. Yelash, W. Paul, K. Binder, M. Müller, L.G. MacDowell
Chem. Phys. 130, 044101 (2009).

17. Structure and pair correlations of a simple coarse grained model for supercritical carbon dioxide
      B.M. Mognetti, M. Oettel, P. Virnau, L. Yelash, K. Binder
Mol. Phys. 107, 331 (2009).

16. From atomistic modeling of macromolecules towards equations of state for polymer solutions and
melts: How important is the accurate description of the local structure?
      K. Binder, W. Paul, P. Virnau, L. Yelash, M. Müller, L.G. MacDowell
Chapter 26, 399 in Coarse-Graining of Condensed Phase and Biomolecular Systems, G.A.
     Voth (ed.),
CRC Press, Boca Raton, FL (2008).

15. Decomposition of polymer solutions: A parallelized molecular dynamics simulation
      L. Yelash, P. Virnau, W. Paul, K. Binder
Phys. Rev. E 78, 031801 (2008).
 

14. Efficient prediction of thermodynamic properties of quadrupolar fluids from simulation of a coarse-
grained model: The case of carbon dioxide
      B.M. Mognetti, L. Yelash, P. Virnau, W. Paul, K.Binder, M. Müller, L.G. MacDowell
Chem. Phys. 128, 104501 (2008).

13. Efficient prediction of thermodynamic properties of quadrupolar fluids from simulation
of a coarse-grained model: The case of carbon dioxide
      B.M. Mognetti, L. Yelash, P. Virnau, W. Paul, K.Binder, M. Müller, L.G. MacDowell
      Chem. Phys. 128, 104501 (2008).

12.  Spherically averaged versus angle-dependent interactions in quadrupolar fluids
       B.M. Mognetti, M. Oettel, L. Yelash, L, P. Virnau, W. Paul, K. Binder
Phys. Rev. E 77, 041506 (2008).

11.  Protein knot server: detection of knots in protein structures
       Kolesov, P. Virnau, L.A. Mirny, M. Kardar
Nucl. Acids Res. 35, W425 (2007).

10. Intricate knots in proteins: function and evolution
      P. Virnau, L.A. Mirny, M. Kardar
PLoS Comp. Biol. 2, e122 (2006).

 9. Capturing knots in polymers
     Eingeladener Beitrag anlässlich eines bei der APS-Frühjahrstagung in Los Angeles 2005 an mich
verliehenen Posterpreises
     P. Virnau, M. Kardar, Y. Kantor
Chaos 15, 041103 (2005).

 8. Polymer+solvent systems: phase diagrams, interface free energies, and nucleation
     K. Binder, M. Müller, P. Virnau, L.G. MacDowell
A
dv. Polym. Sci. 173, 1 (2005).

 7. Calculation of free energy through successive umbrella sampling
 P. Virnau, M. Müller
Chem. Phys. 120, 10925 (2004).

 6. Phase behavior of n-alkanes in supercritical solution
     P. Virnau, M. Müller, L.G. MacDowell, K. Binder
Chem. Phys. 121, 2169 (2004).

 5. Phase separation kinetics in compressible polymer solutions: computer simulation
of the early stages
     P. Virnau, M. Müller, L.G. MacDowell, K. Binder
New J. Phys. 6, 7 (2004).

 4. The evaporation/condensation transition of liquid droplets
     L.G. MacDowell, P.Virnau, M. Müller, K. Binder
Chem. Phys. 120, 5293 (2004).

3Phase diagrams of hexadecane-CO2 mixtures from histogram-reweighting Monte Carlo
    P. Virnau, M. Müller, L.G. MacDowell, K. Binder
Comp. Phys. Commun. 147, 378 (2002).

2. Critical lines and phase coexistence of polymer solutions: A quantitative comparison between
Wertheim’s thermodynamic perturbation theory and computer simulations
    L.G. MacDowell, P. Virnau, M. Müller, K. Binder
Chem. Phys. 117, 6360 (2002).

 1. Interface properties and bubble nucleation in compressible mixtures containing polymers
    M. Müller, L.G. MacDowell, P. Virnau, and K. Binder
Chem. Phys. 117, 5480 (2002).

 

Tagungsberichte (ohne Begutachtung) und sonstige Veröffentlichungen

P22.   Reduced-order hybrid multiscale method combining the Molecular Dynamics
            and the Discontinous-Galerkin method
            Emamy, M. Lukáčová-Medviďová, S. Stalter, P. Virnau, L. Yelash
VII Int. Conf. Comput. Methods Coupled Problems in Science and Engineering, 
Coupled Problems 2017, 62-76

Eds.: Papadrakakis et al., (2017).

P21.   Molecular dynamics simulations in hybrid particle-continuum schemes: Pitfalls and caveats
S. Stalter, L. Yelash, N. Emamy, A. Statt, M. Hanke, M. Lukáčová-Medviďová, P. Virnau
Comp. Phys. Commun. 224, 198-208 (2017).

P20.   Estimation of nucleation barriers from simulations of crystal nuclei surrounded
by fluid in quilibrium
          A. Statt, P. Koß, P. Virnau, K. Binder
W.E. Nagel et al (eds.) High Performance Computing in Science and Engineering ’16, (2016).

P19.  Monte Carlo simulation of crystal-liquid phase coexistence
         A. Statt, F. Schmitz, P. Virnau, K. Binder
W.E. Nagel et al (eds.) High Performance Computing in Science and Engineering ’15, 75 (2015).

P18.  Investigation of finite-size effects in the determination of interfacial tensions
         F. Schmitz, A. Statt, P. Virnau, K. Binder
W.E. Nagel et al. (eds.) High Performance Computing in Science and Engineering ’14, 5,
Springer-Verlag (2014).

P17. Nonlinear response of single particles in glassforming fluids to external forces
         K.  Binder, J. Horbach, P. Virnau, D. Winter
Innovatives Supercomputing in Deutschland (inSiDE) 12, 49 (2014).

P16.  Phase separation in colloid polymer mixtures under confinement
          A. Statt, A. Winkler, P. Virnau, K. Binder
W.E. Nagel et al. (eds.) High Performance Computing in Science and Engineering ’13, 19,
Springer-Verlag (2013

P15. Phase separation in colloidal suspensions by collective growth of domains
         A.Winkler, P. Virnau, K. Binder, R.G. Winkler, G. Gompper
Innovatives Supercomputing in Deutschland (inSiDE) 11, 30 (2013).

P14.  Spinodal decomposition kinetics of colloid-polymer mixtures including
hydrodynamic
interactions
         A.Winkler, P. Virnau, K. Binder
W.E. Nagel et al. (eds.) High Performance Computing in Science and Engineering ’12, 29,
Springer-Verlag (2012).

P13.  Structure and dynamics at polymer-solid interfaces: a molecular dynamics simulations of
1,4-polybutadiene at graphite
          Paul, L. Yelash, P. Virnau, K. Binder, K. Binder, G. Münster, M. Kremer (eds.)
NIC Symposium 2012 Proceedings, 285 (2012).

P12.  Monte Carlo simulation studies of interfacial free energies in colloidal suspensions
         D. Deb, D. Wilms, A. Winkler, P. Virnau, K. Binder
K. Binder, G. Münster, M. Kremer (eds.)
NIC Symposium 2012 Proceedings, 235 (2012).

P11.  Coil-globule transition and knottedness in homo- and heteropolymers
         Bölinger, Hsiao-Ping Hsu, Peter Virnau
Bussei-Kenkyu 92-1, 62 (2009).

P10.  Towards the quantitative prediction of the phase behavior of polymer solutions by computer
simulation
          K. Binder,B.M. Mognetti,L.G. MacDowell,M. Oettel, W. Paul,P. Virnau, L. Yelash
Macromolecular Symposia 278, 1 (2009).

P9.   Simulationen auf Grafikkarten: vom Videospiel zur Materialforschung
         Forschungsmagazin der Uni Mainz
         Oettel, P. Virnau
Natur und Geist 2/2009, 8 (2009).

P8.   Knots in Macromolecular Systems: concepts and challenges
        P.  Virnau
NIC Series Volume 34: From Computational Biophysics to Systems Biology, 287,

U.H.E. Hansmann, J. Meinke, S. Mohanty, O. Zimmermann (eds), (2007). 

P7.  A successive umbrella sampling algorithm to sample and overcome free energy barriers
       P. Virnau, M. Müller
Computer simulation studies in Condensed Matter Physics XVII, 151
D.P. Landau, S.P. Lewis, H.B. Schüttler (eds.), Springer-Verlag (2006).

strong>P6.  El intrigante lazo de Van der Waals
        Von L.G. MacDowell geschriebener Beitrag im Journal der spanischen chemischen Gesellschaft
         L.G. MacDowell, P. Virnau
An. Quim. 101, 19 (2005).

P5. Simulation of transport in partially miscible binary fluids: Combination of Semigrandcanonical
Monte Carlo and Molecular Dynamics Methods
        K. Binder, S.K. Das, J. Horbach, M. Müller, R. Vink, P. Virnau
Multiscale Modelling and Simulation, S. Attinger, P. Koumoutsakos (eds.), Springer-Verlag (2004).

P4. The droplet evaporation/condensation transition in a finite volume
       P. Virnau, L.G. MacDowell, M. Müller, K. Binder
Computer Simulation Studies in Condensed Matter Physics XVI, 129

D.P. Landau, S.P. Lewis, H.B. Schüttler (eds.), Springer-Verlag (2003).

P3.  How do droplets depend on the system size? Droplet condensation and nucleation in small
simulation cells
       P. Virnau, L.G. MacDowell, M. Müller, K. Binder
High Performance Computing in Science and Engineering ‘04, 125
Krause, W. Jäger, M. Resch (eds.), Springer-Verlag (2003).

P2.  Reduced-order hybrid multiscale method combining the Molecular Dynamics  <br<
and the Discontinous-Galerkin method
       Emamy, M. Lukáčová-Medviďová, S. Stalter, P. Virnau, L. Yelash
VII Int. Conf. Comput. Methods Coupled Problems in Science and Engineering,
Coupled Problems 2017, 62-76

Eds.: Papadrakakis et al., (2017).

P1.  Molecular dynamics simulations in hybrid particle-continuum schemes: Pitfalls
and caveats
S. Stalter, L. Yelash, N. Emamy, A. Statt, M. Hanke, M. Lukáčová-Medviďová,
P. Virnau
Comp. Phys. Commun. 224, 198-208 (2017).

Posted on

Marialore Sulpizi: Research

Interfaces: structure, reactivity, spectroscopy

Liquid-solid interfaces are ubiquitous and responsible for a number of phenomena encountered in biological, chemical and physical processes. Surface-induced changes of material properties are not only important for the solid support but also for the liquid itself. The complex chemistry at solid-liquid interfaces is fundamental to heterogeneous catalysis and electrochemistry and has become especially topical in connection with the search for new materials for energy production. The interactions at solid/liquid interface control crystallization and shape selective crystal growth. This is fundamental for example to the synthesis of nanoparticles with specific tailored shape/size. In life science, the most important solid-liquid interfaces are the cell-membrane / water interfaces. Phenomena occurring at the surface of phospholipid bilayers control the docking of proteins, the transmission of signals as well as transport of molecules in and out of the cell. More recently the development of bio-compatible materials has lead to research on the interface between bio-compatible material and lipid/proteins in aqueous solution.

Interface Selective Vibrational Spectroscopy

Confined water at nanoscale shows properties which are remarkably different from bulk. Vibrational Sum Frequency Generation Spectroscopy (VSFG) has contributed to a large extent to draw the attention on the new physical and chemical properties at interfaces, thanks to its ability to selectively probe non-centrosymmetric systems. However, the microscopic characterization of the VSFG spectra remains hard even with the development of some improvements like Phase-Sensitive VSFG. Molecular dynamics simulations can play a key role to provide a molecular interpretation of the spectra. In particular DFT-based simulations which do not require a priori parametrization, are particularly suitable to address the heterogeneous environment at interfaces. Our aim is to advance computational spectrscopy methods in order to provide a microscopic understanding of the special water structure and dynamics at interfaces. For more information, please contact Marialore Sulpizi.
Collaborators: Ellen Backus, Mischa Bonn and Yuki Nagata (MPIP).

How the Interface Interactions Influence the Crystal Growth

We investigate how the properties at the interface influence the crystal growth in a few selected example. In particular one topic is related to the understanding of the microscopic origin of the asymmetric growth mechanism in gold nanorods (Collaborators: C. Sönnichsen, Chemistry, JGU). The second topic is related to understanding how bio-polymers such as polyacrylate, poly-aspartate and poly-glutamate influence the crystalline phase, morphology and growth rate of calcium oxalate. Ab initio molecular dynamics study of the interactions of the water/mineral and water/polymer/mineral interfaces shed light on the biomineralization process and on the mechanisms responsible for its inhibition. For more information, please contact Marialore Sulpizi.
(Collaborators: D. Donadio, UCLA).

Solid/Water Interface Structure and Reactivity

We aim to a detailed understanding of the molecular behaviour of the different solid–water interfaces, using density functional theory based molecular dynamics (DFTMD) simulations, where a consistent treatment of the electronic structure of solvent and surface is provided. Our interest includes oxide water interfaces (such as silica, alumina, clays) as well as ionic salts/water interfaces, such as the fluoride/water interface. For more information, please contact Marialore Sulpizi.


Computational Electrochemistry in Extended Systems

We calculate the redox potential and reorganisation free energy for molecules in complex environments. In particular we elucidated the role of the environment (solvent, protein scaffold) and its H-bond network on the electrochemical properties of several systems such as quinones and metalloproteins. Further works involves electrochemical properties of solid/liquid interfaces. For more information, please contact Marialore Sulpizi.

Posted on

Thomas Speck: Curriculum Vitae

Education

01/2008 PhD, University of Stuttgart
08/2004 Diploma in Physics, University of Stuttgart

Academic Career

since 10/2013 Professor (W2), JGU Mainz
04/2011 - 09/2013 Post-Doc, University of Düsseldorf (with Hartmut Löwen)
01/2009 - 03/2011 Feodor Lynen Research Fellow, University of California, Berkeley (with David Chandler)
01/2008 - 12/2008 Post-Doc, University of Stuttgart (with Udo Seifert)

Academic and Editorial Services

since 07/2019 Spokesperson for profile area M³ODEL
since 04/2019 Chairman of the Institute of Physics, JGU Mainz
since 06/2016 Associate Editor New Journal of Physics

 

Posted on

Thomas Speck: Publications

Peer reviewed

preprints

  1. Exploiting compositional disorder in collectives of light-driven circle walkers
    F. Siebers, A. Jayaram, P. Blümler, and T. Speck, submitted
  2. Structure formation of C60 on insulating CaF2 substrates: Matching experiments with simulations
    W. Janke, L. Höltkemeier, A. Kühnle, and T. Speck, submitted
  3. Synthetic antibody-derived immunopeptide provides neuroprotection in glaucoma through molecular interaction with retinal protein Histone H3.1
    K. Nzogang Fomo, C. Schmelter, J. Atta, V.M. Beutgen, R. Schwarz, N. Perumal, G. Govind, T. Speck, N. Pfeiffer, and F.H. Grus, submitted

2022

  1. Employing artificial neural networks to identify reaction coordinates and pathways for self-assembly
    J. Appeldorn, S. Lemcke, T. Speck, and A. Nikoubashman, J. Phys. Chem. B 126, 5007 (2022)
    [abstract]
  2. Response to "Comment on 'Communication: Is directed percolation in colloid-polymer mixtures linked to dynamic arrest?' " [J. Chem. Phys. 148, 241101 (2018)]
    D. Richard, C.P. Royall, and T. Speck, J. Chem. Phys. 157, 027102 (2022)
    [abstract]
  3. Critical behavior of active Brownian particles: Connection to field theories
    T. Speck, Phys. Rev. E 105, 064601 (2022)
    [abstract] [arXiv]
  4. Force generation in confined active fluids: The role of microstructure
    S. Paul, A. Jayaram, N. Narinder, T. Speck, and C. Bechinger, Phys. Rev. Lett. 129, 058001 (2022)
    [abstract] [arXiv]
    • Editors' Suggestion with a viewpoint by S. Thutupalli
  5. Efficiency of isothermal active matter engines: Strong driving beats weak driving
    T. Speck, Phys. Rev. E 105, L012601 (2022)
    [abstract] [arXiv]
  6. Predicting the Supramolecular Assembly of Amphiphilic Peptides from Comprehensive Coarse-Grained Simulations
    S. Chakraborty, C.M. Berac, M. Urschbach, D. Spitzer, M. Mezger, P. Besenius, and T. Speck, ACS Appl. Polym. Mater. (2022)
    [abstract]

2021

  1. Modeling of biomolecular machines in non-equilibrium steady states
    T. Speck, J. Chem. Phys. 155, 230901 (2021)
    [abstract] [arXiv]
  2. Hunting active Brownian particles: Learning optimal behavior
    M. Gerhard, A. Jayaram, A. Fischer, and T. Speck, Phys. Rev. E 104, 054614 (2021)
    [abstract] [arXiv]
  3. Modeling non-linear dielectric susceptibilities of supercooled molecular liquids
    T. Speck, J. Chem. Phys. 155, 014506 (2021)
    [abstract] [arXiv]
    • selected as Editor's Pick
  4. Mobilization upon Cooling
    S. Aeschlimann, L. Lyu, S. Becker, S. Mousavion, T. Speck, H.-J. Elmers, B. Stadtmüller, M. Aeschlimann, R. Bechstein, and A. Kühnle, Angew. Chem. Int. Ed. (2021)
    [abstract]
  5. Multiscale modelling of structure formation of C60 on insulating CaF2 substrates
    W. Janke and T. Speck, J. Chem. Phys. 154, 234701 (2021)
    [abstract] [arXiv]
  6. High-order simulation scheme for active particles driven by stress boundary conditions
    B. Deußen, A. Jayaram, F. Kummer, Y. Wang, T. Speck, and M. Oberlack, J. Phys. Condens. Matter 33, 244004 (2021)
    [abstract]
  7. Tip-induced mobilization upon cooling of Ni monolayers on Re(0001)
    J. Regel, T. Mashoff, T. Speck, and H. J. Elmers, Phys. Rev. B 103, 134114 (2021)
    [abstract]
  8. Critical behaviour in active lattice models of motility-induced phase separation
    F. Dittrich, T. Speck, and P. Virnau, Eur. J. Phys. E 44, 53 (2021)
    [abstract] [arXiv]
  9. Vorticity Determines the Force on Bodies Immersed in Active Suspensions
    T. Speck and A. Jayaram, Phys. Rev. Lett. 126, 138002 (2021)
    [abstract] [arXiv]
  10. Coexistence of active Brownian disks: van der Waals theory and analytical results
    T. Speck, Phys. Rev. E 103, 012607 (2021)
    [abstract] [arXiv]

2020

  1. Dynamical phase transitions and their relation to structural and thermodynamic aspects of glass physics
    C.P. Royall, F. Turci, and T. Speck, J. Chem. Phys. 153, 090901 (2020)
    [abstract] [arXiv]
  2. Modeling epitaxial film growth of C60 revisited
    W. Janke and T. Speck, Phys. Rev. B 101, 125427 (2020)
    [abstract] [arXiv]
  3. Collective forces in scalar active matter
    T. Speck, Soft Matter 16, 2652 (2020)
    [abstract] [arXiv]
  4. The 2020 motile active matter roadmap
    G. Gompper et al., J. Phys.: Condens. Matter 32, 193001 (2020)
    [abstract] [arXiv]
  5. From scalar to polar active matter: Connecting simulations with mean-field theory
    A. Jayaram, A. Fischer, and T. Speck, Phys. Rev. E 101, 022602 (2020)
    [abstract] [arXiv]
  6. Quorum-sensing active particles with discontinuous motility
    A. Fischer, F. Schmid, and T. Speck, Phys. Rev. E 101, 012601 (2020)
    [abstract] [arXiv]
  7. Dynamical coexistence in moderately polydisperse hard-sphere glasses
    M. Campo and T. Speck, J. Chem. Phys. 152, 014501 (2020)
    [abstract] [arXiv]

2019

  1. Modeling Supramolecular Polymerization: The Role of Steric and Hydrophobic Interactions
    S. Chakraborty, C.M. Berac, B. Kemper, P. Besenius, and T. Speck, Macromolecules 52, 7661-7667 (2019)
    [abstract]
  2. Dynamic facilitation theory: A statistical mechanics approach to dynamic arrest
    T. Speck, J. Stat. Mech. 084015 (2019)
    [abstract] [arXiv]
  3. Devitrification of the Kob-Andersen glass former: Competition with the locally favored structure
    F. Turci, C.P. Royall, and T. Speck, J. Phys.: Conf. Ser. 1252, 012012 (2019)
    [abstract] [arXiv]
  4. Thermodynamic approach to the self-diffusiophoresis of colloidal Janus particles
    T. Speck, Phys. Rev. E 99 060602(R) (2019)
    [abstract] [arXiv]
  5. Classical nucleation theory for the crystallization kinetics in sheared liquids
    D. Richard and T. Speck, Phys. Rev. E 99, 062801 (2019)
    [abstract] [arXiv]
  6. Spontaneous Spatiotemporal Ordering of Shape Oscillations Enhances Cell Migration
    M. Campo, S.K. Schnyder, J.J. Molina, T. Speck, and R. Yamamoto, Soft Matter 15, 4939 (2019)
    [abstract] [arXiv]
  7. Aggregation and sedimentation of active Brownian particles at constant affinity
    A. Fischer, A. Chatterjee, and T. Speck, J. Chem. Phys. 150, 064910 (2019)
    [abstract] [arXiv]
  8. Non-equilibrium Markov state modeling of periodically driven biomolecules
    F. Knoch and T. Speck, J. Chem. Phys. 150, 054103 (2019)
    [abstract] [arXiv]

2018

  1. Dynamics of Binary Active Clusters Driven by Ion-Exchange Particles
    R. Niu, A. Fischer, T. Palberg, and T. Speck, ACS Nano 12, 10932 (2018)
    [abstract]
  2. Critical behavior of active Brownian particles
    J.T. Siebert, F. Dittrich, F. Schmid, K. Binder, T. Speck, and P. Virnau, Phys. Rev. E 98, 030601(R) (2018)
    [abstract] [arXiv]
  3. Active Brownian particles driven by constant affinity
    T. Speck, EPL 123, 20007 (2018)
    [abstract] [arXiv]
  4. Self-organization of active particles by quorum sensing rules
    T. Bäuerle, A. Fischer, T. Speck, and C. Bechinger, Nat. Commun. 9, 3232 (2018)
    [abstract]
  5. Highly controlled optical transport of cold atoms into a hollow-core fiber
    M. Langbecker, R. Wirtz, F. Knoch, M. Noaman, T. Speck, and P. Windpassinger, New J. Phys. 20, 083038 (2018)
    [abstract] [arXiv]
  6. Communication: Is directed percolation in colloid-polymer mixtures linked to dynamic arrest?
    D. Richard, C.P. Royall, and T. Speck, J. Chem. Phys. 148, 241101 (2018)
    [abstract] [arXiv]
  7. Crystallization of hard spheres revisited. II. Thermodynamic modeling, nucleation work, and the surface of tension
    D. Richard and T. Speck, J. Chem. Phys. 148, 224102 (2018)
    [abstract] [arXiv]
  8. Coupling between criticality and gelation in "sticky" spheres: A structural analysis
    D. Richard, J. Hallett, T. Speck, and C.P. Royall, Soft Matter 14, 5554 (2018)
    [abstract] [arXiv]
  9. Structural-dynamical transition in the Wahnström mixture
    F. Turci, T. Speck, and C.P. Royall, Eur. Phys. J. E 41, 54 (2018)
    [abstract] [arXiv]
  10. Crystallization of hard spheres revisited. I. Extracting kinetics and free energy landscape from forward flux sampling
    D. Richard and T. Speck, J. Chem. Phys. 148, 124110 (2018)
    [abstract] [arXiv]
  11. Dynamic coarse-graining fills the gap between atomistic simulations and experimental investigations of mechanical unfolding
    F. Knoch, K. Schäfer, G. Diezemann, and T. Speck, J. Chem. Phys. 148, 044109 (2018)
    [abstract] [arXiv]
  12. Three-body correlations and conditional forces in suspensions of active hard disks
    A. Härtel, D. Richard, and T. Speck, Phys. Rev. E 97, 012606 (2018)
    [abstract] [arXiv]
  13. Unfolding dynamics of small peptides biased by constant mechanical forces
    F. Knoch and T. Speck, Mol. Syst. Des. Eng. 3, 204 (2018)
    [abstract]

2017

  1. Nonequilibrium depletion interactions in active microrheology
    R. Wulfert, U. Seifert, and T. Speck, Soft Matter 13, 9093 (2017)
    [abstract]
  2. Non-Equilibrium Phase Transition in an Atomistic Glassformer: The Connection to Thermodynamics
    F. Turci, C.P. Royall, and T. Speck, Phys. Rev. X 7, 031028 (2017)
    [abstract] [arXiv]
  3. Experimental Evidence for a Structural-Dynamical Transition in Trajectory Space
    R. Pinchaipat, M. Campo, F. Turci, J. Hallett, T. Speck, and C.P. Royall, Phys. Rev. Lett. 119, 028004 (2017)
    [abstract] [arXiv]
  4. Self-assembly of colloidal molecules due to self-generated flow
    R. Niu, T. Palberg, and T. Speck, Phys. Rev. Lett. 119, 028001 (2017)
    [abstract] [arXiv]
  5. Driven Brownian particle as a paradigm for a nonequilibrium heat bath: Effective temperature and cyclic work extraction
    R. Wulfert, M. Oechsle, T. Speck, and U. Seifert, Phys. Rev. E 95, 050103 (2017)
    [abstract] [arXiv]
  6. Thermodynamic formalism for transport coefficients with an application to the shear modulus and shear viscosity
    T. Palmer and T. Speck, J. Chem. Phys. 146, 124130 (2017)
    [abstract] [arXiv]
  7. Estimation of the critical behavior in an active colloidal system with Vicsek-like interactions
    B. Trefz, J.T. Siebert, T. Speck, K. Binder, and P. Virnau, J. Chem. Phys. 146, 074901 (2017)
    [abstract] [arXiv]
  8. Phase behavior of active Brownian disks, spheres, and dimers
    J.T. Siebert, J. Letz, T. Speck, and P. Virnau, Soft Matter 13, 1020 (2017)
    [abstract] [arXiv]
  9. Nonequilibrium Markov state modeling of the globule-stretch transition
    F. Knoch and T. Speck, Phys. Rev. E 95, 012503 (2017)
    [abstract] [arXiv]

2016

  1. Discontinuous thinning in active microrheology of soft complex matter
    R. Wulfert, U. Seifert, and T. Speck, Phys. Rev. E 94, 062610 (2016)
    [abstract] [arXiv]
  2. Gold Nanorods as Plasmonic Sensors for Particle Diffusion
    V. Wulf, F. Knoch, T. Speck, and C. Sönnichsen, J. Phys. Chem. Lett. 7, 4951 (2016)
    [abstract]
  3. Collective behavior of active Brownian particles: From microscopic clustering to macroscopic phase separation
    T. Speck, Eur. Phys. J. Special Topics 225, 2287 (2016)
    [abstract]
  4. Applicability of effective pair potentials for active Brownian particles
    M. Rein and T. Speck, Eur. Phys. J. E 39, 84 (2016)
    [abstract] [arXiv]
  5. Thermodynamic formalism and linear response theory for nonequilibrium steady states
    T. Speck, Phys. Rev. E 94, 022131 (2016)
    [abstract] [arXiv]
  6. Polydisperse hard spheres: Crystallization kinetics in small systems and role of local structure
    M. Campo and T. Speck, J. Stat. Mech. 084007 (2016)
    [abstract] [arXiv]
  7. Finite-size scaling of charge carrier mobility in disordered organic semiconductors
    P. Kordt, T. Speck, and D. Andrienko, Phys. Rev. B 94, 014208 (2016)
    [abstract] [arXiv]
  8. Ideal bulk pressure of active Brownian particles
    T. Speck and R.L. Jack, Phys. Rev. E 93, 062605 (2016)
    [abstract] [arXiv]
  9. Stochastic thermodynamics for active matter
    T. Speck, EPL 114, 30006 (2016)
    [abstract] [arXiv]
    • see the comment by A. Baskaran in the "Journal Club for Condensed Matter Physics"
  10. Nucleation pathway and kinetics of phase-separating active Brownian particles
    D. Richard, H. Löwen, and T. Speck, Soft Matter 12, 5257 (2016)
    [abstract] [arXiv]
  11. Collective Behavior of Quorum-Sensing Run-and-Tumble Particles under Confinement
    M. Rein, N. Heinß, F. Schmid, and T. Speck, Phys. Rev. Lett. 116, 058102 (2016)
    [abstract] [arXiv]
  12. Transmission of torque at the nanoscale
    I. Williams, E.C. Oğuz, T. Speck, P. Bartlett, H. Löwen, and C.P. Royall, Nature Phys. 12, 98 (2016)
    [abstract] [arXiv]

2015

  1. Cycle representatives for the coarse-graining of systems driven into a non-equilibrium steady state
    F. Knoch and T. Speck, New J. Phys. 17, 115004 (2015)
    [abstract] [arXiv]
  2. The role of shear in crystallization kinetics: From suppression to enhancement
    D. Richard and T. Speck, Sci. Rep. 5, 14610 (2015)
    [abstract] [arXiv]
  3. Negative Interfacial Tension in Phase-Separated Active Brownian Particles
    J. Bialké, J.T. Siebert, H. Löwen, and T. Speck, Phys. Rev. Lett. 115, 098301 (2015)
    [abstract] [arXiv]
  4. Dynamical mean-field theory and weakly non-linear analysis for the phase separation of active Brownian particles
    T. Speck, A.M. Menzel, J. Bialké, and H. Löwen, J. Chem. Phys. 142, 224109 (2015)
    [abstract] [arXiv]
  5. Active colloidal suspensions: Clustering and phase behavior
    J. Bialké, T. Speck, and H. Löwen, J. Non-Cryst. Solids 407, 367 (2015)
    [abstract] [arXiv]

2014

  1. Meta-work and the analogous Jarzynski relation in ensembles of dynamical trajectories
    R.M. Turner, T. Speck, and J.P. Garrahan, J. Stat. Mech. P09017 (2014)
    [abstract] [arXiv]
  2. Effective Cahn-Hilliard Equation for the Phase Separation of Active Brownian Particles
    T. Speck, J. Bialké, A.M. Menzel, and H. Löwen, Phys. Rev. Lett. 112, 218304 (2014)
    [abstract] [arXiv]

2013

  1. Stochastic thermodynamics of fluctuating density fields: Non-equilibrium free energy differences under coarse-graining
    T. Leonard, B. Lander, U. Seifert, and T. Speck, J. Chem. Phys. 139, 204109 (2013)
    [abstract] [arXiv]
  2. Application of classical nucleation theory to the formation of adhesion domains
    R.L.C. Vink and T. Speck, Soft Matter 9, 11197 (2013)
    [abstract]
  3. Microscopic theory for the phase separation of self-propelled repulsive disks
    J. Bialké, H. Löwen, and T. Speck, EPL 103, 30008 (2013)
    [abstract] [arXiv]
  4. Gaussian field theory for the Brownian motion of a solvated particle
    T. Speck, Phys. Rev. E 88, 014103 (2013)
    [abstract] [arXiv]
  5. Dynamical Clustering and Phase Separation in Suspensions of Self-Propelled Colloidal Particles
    I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger, and T. Speck, Phys. Rev. Lett. 110, 238301 (2013)
    [abstract] [arXiv]
  6. Crystallization in a sheared colloidal suspension
    B. Lander, U. Seifert, and T. Speck, J. Chem. Phys. 138, 224907 (2013)
    [abstract] [arXiv]

2012

  1. The large deviation function for entropy production: the optimal trajectory and the role of fluctuations
    T. Speck, A. Engel, and U. Seifert, J. Stat. Mech. P12001 (2012)
    [abstract] [arXiv]
  2. First-order Phase Transition in a Model Glass Former: Coupling of Local Structure and Dynamics
    T. Speck, A. Malins, and C.P. Royall, Phys. Rev. Lett. 109, 195703 (2012)
    [abstract]
  3. Random pinning limits the size of membrane adhesion domains
    T. Speck and R.L.C. Vink, Phys. Rev. E 86, 031923 (2012)
    [abstract] [arXiv]
  4. Constrained dynamics of localized excitations causes a non-equilibrium phase transition in an atomistic model of glass formers
    T. Speck and D. Chandler, J. Chem. Phys. 136, 184509 (2012)
    [abstract] [arXiv]
  5. Crystallization in a dense suspension of self-propelled particles
    J. Bialké, T. Speck, and H. Löwen, Phys. Rev. Lett. 108, 168301 (2012)
    [abstract] [arXiv]
  6. Effective confinement as origin of the equivalence of kinetic temperature and fluctuation-dissipation ratio in a dense shear-driven suspension
    B. Lander, U. Seifert, and T. Speck, Phys. Rev. E 85, 021103 (2012)
    [abstract] [arXiv]

2011

  1. Work distribution for the driven harmonic oscillator with time-dependent strength: Exact solution and slow driving
    T. Speck, J. Phys. A: Math. Gen. 44, 305001 (2011)
    [abstract] [arXiv]
  2. Effective free energy for pinned membranes
    T. Speck, Phys. Rev. E 83, 050901(R) (2011)
    [abstract] [arXiv]
  3. Space-time phase transitions in driven kinetically constrained lattice models
    T. Speck and J.P. Garrahan, Eur. Phys. J. B 79, 1 (2011)
    [abstract] [arXiv]

2010

  1. Mobility and diffusion of a tagged particle in a driven colloidal suspension
    B. Lander, U. Seifert, and T. Speck, EPL 92, 58001 (2010)
    [abstract] [arXiv]
  2. Specific adhesion of membranes: Mapping to an effective bond lattice gas
    T. Speck, E. Reister, and U. Seifert, Phys. Rev. E 82, 021923 (2010)
    [abstract] [arXiv]
  3. Driven Soft Matter: Entropy Production and the Fluctuation-Dissipation Theorem
    T. Speck, Prog. Theor. Phys. Suppl. 184, 248 (2010)
    [abstract] [arXiv]
    • Special issue YKIS'09 Kyoto
  4. Fluctuation-dissipation theorem in nonequilibrium steady states
    U. Seifert and T. Speck, EPL 89, 10007 (2010)
    [abstract] [arXiv]

2009

  1. Extended fluctuation-dissipation theorem for soft matter in stationary flow
    T. Speck and U. Seifert, Phys. Rev. E 79, 040102(R) (2009)
    [abstract] [arXiv]

2008

  1. Large deviation function for entropy production in driven one-dimensional systems
    J. Mehl, T. Speck, and U. Seifert, Phys. Rev. E 78, 011123 (2008)
    [abstract] [arXiv]
  2. Role of External Flow and Frame Invariance in Stochastic Thermodynamics
    T. Speck, J. Mehl, and U. Seifert, Phys. Rev. Lett. 100, 178302 (2008)
    [abstract] [arXiv]

2007

  1. The Jarzynski relation, fluctuation theorems, and stochastic thermodynamics for non-Markovian processes
    T. Speck and U. Seifert, J. Stat. Mech. L09002 (2007)
    [abstract] [arXiv]
  2. Distribution of entropy production for a colloidal particle in a nonequilibrium steady state
    T. Speck, V. Blickle, C. Bechinger, and U. Seifert, Europhys. Lett. 79, 30002 (2007)
    [abstract] [arXiv]
  3. Characterizing potentials by a generalized Boltzmann factor
    V. Blickle, T. Speck, U. Seifert, and C. Bechinger, Phys. Rev. E 75, 060101(R) (2007)
    [abstract] [arXiv]
  4. Einstein relation generalized to nonequilibrium
    V. Blickle, T. Speck, C. Lutz, U. Seifert, and C. Bechinger, Phys. Rev. Lett. 98, 210601 (2007)
    [abstract] [arXiv]
  5. Entropy production for mechanically or chemically driven biomolecules
    T. Schmiedl, T. Speck, and U. Seifert, J. Stat. Phys. 128 77 (2007)
    [abstract] [arXiv]

2006

  1. Measurement of Stochastic Entropy Production
    C. Tietz, S. Schuler, T. Speck, U. Seifert, and J. Wrachtrup, Phys. Rev. Lett. 97, 050602 (2006)
    [abstract] [arXiv]
  2. Restoring a fluctuation-dissipation theorem in a nonequilibrium steady state
    T. Speck and U. Seifert, Europhys. Lett. 74, 391 (2006)
    [abstract] [arXiv]
  3. Thermodynamics of a Colloidal Particle in a Time-Dependent Nonharmonic Potential
    V. Blickle, T. Speck, L. Helden, U. Seifert, and C. Bechinger, Phys. Rev. Lett. 96, 070603 (2006)
    [abstract] [arXiv]

2005

  1. Integral fluctuation theorem for the housekeeping heat
    T. Speck and U. Seifert, J. Phys. A: Math. Gen. 38, L581 (2005)
    [abstract] [arXiv]
  2. Experimental Test of the Fluctuation Theorem for a Driven Two-Level System with Time-Dependent Rates
    S. Schuler, T. Speck, C. Tietz, J. Wrachtrup, and U. Seifert, Phys. Rev. Lett. 94, 180602 (2005)
    [abstract]
  3. Dissipated work in driven harmonic diffusive systems: General solution and application to stretching Rouse polymers
    T. Speck and U. Seifert, Eur. Phys. J. B 43, 543 (2005)
    [abstract]

2004

  1. Distribution of work in isothermal nonequilibrium processes
    T. Speck and U. Seifert, Phys. Rev. E 70, 066112 (2004)
    [abstract] [arXiv]

Other publications

prefaces and viewpoints

  1. Focus on Active Colloids and Nanoparticles
    T. Speck, J. Tailleur, and J. Palacci, New J. Phys. 22 060201 (2020)
    [abstract]
  2. A Theory to Tackle Supercooling
    T. Speck, Physics (2019)
  3. Fundamental Problems in Statistical Physics XIV
    M. Baiesi, A. Rosso, and T. Speck, Physica A (2017)
    [abstract]
  4. Special Issue on Structure in Glassy and Jammed Systems
    C.P. Royall and T. Speck, J. Stat. Mech. 054045 (2016)
    [abstract]

unpublished

  1. Geometric view of stochastic thermodynamics for non-equilibrium steady states
    T. Speck, arXiv:1707.05289 (2017)
    [arXiv]
  2. Liquid-liquid phase transition in an atomistic model glass former
    T. Speck, C.P. Royall, and S.R. Williams, arXiv:1409.0751 (2014)
    [arXiv]
Posted on

Thomas Speck: Research

Collective Behavior of Self-propelled Particles

Dynamical collective behavior observed in, e.g., schools of fish and flocks of birds can often be described with simple models of so-called self-propelled particles. Even complex behavior can be reproduced by simple rules that are followed by all individuals (e.g., follow your neighbors but do not bump into them). On the microscale, both bacteria and colloidal particles have emerged as model systems to study a wealth of different phenomena such as swirling, swarming, and turbulence.
We are especially interested in the novel collective properties of colloidal Janus particles that are propelled by diffusio-phoresis or similar means, which have been realized experimentally very recently. Depending on the interplay of volume exclusion, hydrodynamic alignment of orientations, and attractive forces, several phenomena like living crystals and phase separation are observed.
For more information, please contact  Thomas Speck  and  Peter Virnau.


Glassy dynamics: Dynamical facilitation theory

Most liquids (including water) can be supercooled below their melting temperature and stay in the liquid state. The reason is the presence of a free energy barrier that the system has to overcome in order to crystallize. But some liquids never crystallize and at some temperature fall out of equilibrium. They form what we call a glass, a substance that macroscopically appears as a rigid solid but which microscopically is still disordered like the liquid. A comprehensive theory describing this state of matter is still missing and is one of the major challenges in condensed matter science.
For more information, please contact  Thomas Speck.

Stochastic Thermodynamics

The extraction of useable work from heat has fueled the industrial revolution of the 18th century, the scientific basis of which is provided by classical thermodynamics. Although thermodynamics can be justified by statistical arguments, it is still concerned with average values due to the vast number of degrees of freedom that comprise a macroscopic body. Quite in contrast, machines on the microscale are faced with fluctuations that are large. Our very lifes depend on such machines (e.g., proteins) to work properly. Stochastic thermodynamics is a generalization of thermodynamic notions such as work and heat to include fluctuations. In particular, the probability distributions of these quantities are not arbitrary but respect certain symmetries collectively called fluctuation theorems.
For more information, please contact  Thomas Speck.

Posted on

Thomas Speck: Teaching

Teaching in Mainz

Summer schools / Short courses

  • 12/2020 TRR 146 Winter School, Mainz: Non-equilibrium statistical physics of biomolecular machines
  • 06/2019 GSSI School "Statistical Mechanics of Active Matter”, GSSI L'Aquila (Italy): Thermodynamics of Self-Propulsion: From Single Particles to Interacting Suspensions
  • 02/2019 Winter School on Motile Active Matter, Jülich: Active Brownian Particles
  • 06/2018 IoP Advanced School in Liquids and Complex Fluids “Solutions in Spring”, Bristol (UK): Dynamical arrest
Posted on

Giovanni Settani: Research

Statistical Mechanical Modeling and Simulations of Repeat Proteins

Repeat protein domains are formed by tandem arrays of repeating structural units, constitute about 20% of the eukaryotic proteome, mediating protein-protein interactions and acting as mechano-transductors. As such they may represent the basis for the construction of mechanical nanodevices. In collaboration with experimental groups in the field, we have been working on simplified models of repeat proteins which explains both the thermodynamics and the kinetics of folding of this class of proteins. We have also been carrying out atomistic molecular dynamics (MD) simulations of several repeat protein systems to study their folding behavior and their mechanical characteristics when subjected to external pulling forces. If you are interested, please contact  Giovanni Settanni.

Transport and Properties of Blood Proteins

Transport of nutrients to peripheral tissues and healing of damaged blood vessels are among the most important functions of blood. These functions involve the action of a series of proteins some of which are found in large amounts in the blood circulation. Fibrinogen is a multiprotein complex which, when activated, aggregate to form fibrin, a net-shaped molecular formation which is fundamental for the coagulation of blood following, i.e, a wound or when an extraneous body comes into contact with blood (i.e., graft implants). Thus, adsorption of fibrinogen on material surfaces play an important role in viability of those materials for implants.

In collaboration with experimental groups in the field, we use atomistic molecular dynamics simulations to characterize the adsorption process of fibrinogen on material surfaces. Another important molecule in the blood is albumin, which mediate transport of lipids and other molecules in blood. Albumin is a multidomain protein which provides several binding sites used to bind a range of different target molecules. Target molecules (lipids, drugs, etc.) bind to albumin which act as a transporter, and are then released where needed by blood circulation. Here we use molecular dynamics simulations to study the binding modes of several lipids to Albumin and the kinetics of lipid release/uptake. If you are interested, please contact Friederike Schmid or Giovanni Settanni.

Protein and Peptide Folding

Our activity focuses on the development and application of methods for the identification of the folding transition state of peptides  and, more in general, for the complete characterization and representation of the dynamics of peptides by using atomistic molecular dynamics simulations . This research effort is based on the application of concepts like kinetic networks (figure on the left) and Markov models to the trajectory data of peptides collected by MD simulations. Results from this line of research are validated against available experimental data on the kinetics of folding of peptides (folding/unfolding rates, phi values). If you are interested, please contact  Giovanni Settanni.

Posted on

Friederike Schmid: Publications

  1. From heteropolymer stiffness distributions to effective homopolymers: A conformational analysis of intrinsically disordered proteins
    Y. Witzky, F. Schmid, A. Nikoubashman, submitted (2025).

  2. Assessing the helical stability of polyXYs at the boundaries of intrinsically disordered regions with MD simulations
    M. Gonçalves-Kulik, L. A. Baptista, F. Schmid, M. A. Andrade-Navarro, Computational and Structural Biotechnology Reports 2, 100054 (2025).
    doi: 10.1016/j.csbr.2025.100054

  3. Micelle forming Linear-Dendritic block copolymers: A theoretical comparison between random hyperbranched and precise dendrimer polymer architectures
    M. Giannakou, O. Borisov, F. Schmid, published online (2025).
    doi: 10.1021/acs.macromol.5c00615

  4. Sol-gel transition in heteroassociative RNA-protein solutions: A quantitative comparison of coarse-grained simulations and the Semenov-Rubinstein theory
    X. Chen, J. A. Vishnu, P. Besenius, J. König, F. Schmid, Macromolecules 58, 3331 (2025).
    doi: 10.1021/acs.macromol.4c03065

  5. Relaxation dynamics of entangled linear polymer melts via molecular dynamics simulations
    A. F. Behbahani, F. Schmid, Macromolecules 58, 767 (2025).
    doi: 10.1021/acs.macromol.4c02168

  6. Ionizable cationic lipids and helper lipids synergistically contribute to RNA packing and protection in lipid-based nanomaterials
    D. N. Zimmer, F. Schmid, G. Settanni, J. Phys. Chem. B 128, 10165 (2024).
    doi: 10.1021/acs.jpcb.4c05057

  7. Phase separation dynamics in wetting ridges of polymer surfaces swollen with oils of different viscosities
    Z. Cai, R. Badr, L. Hauer, K. Chaudhuri, A. Skabeev, F. Schmid, J. Pham, Soft Matter 20, 7300 (2024).
    doi: 10.1039/D4SM00576G

  8. Strong stretching theory of polydisperse curved brushes
    M. Giannakou, O. Borisov, F. Schmid, J. Chem. Phys. 161, 014903 (2024).
    doi: 10.1063/5.0213524

  9. Conditions for the co-existence of promoter and gene-body condensates
    A. Changiarath, J. J. Michels, R. Herrera Rodriguez, S. M. Hanson, F. Schmid, J. Padeken, L. S. Stelzl, preprint (2024).
    doi: 10.1101/2024.03.16.585180

  10. An efficient and accurate SCF algorithm for block copolymer films and brushes using adaptive discretization
    Le Qiao, M. Giannakou, F. Schmid, Polymers 26, 1228 (2024).
    doi: 10.3390/polym16091228

  11. Atomistic molecular dynamics simulations of ABA-type polymer peptide conjugates: Insights into supramolecular structures and their circular dichroism spectra
    M. L. Obenauer, J. A. Dresel, M. Schweitzer, P. Besenius, F. Schmid, Macromol. Rapid Comm. 45, 2400149 (2024).
    doi: 10.1002/marc.202400149

  12. Scalable approach to molecular motor-polymer conjugates for light-driven artificial muscles
    X. Yao, J. A. Vishnu, C. Lupfer, D. Hoenders, O. Skarsetz, W. Chen, D. Dattler, A. Perrot, W-Z. Wang, C. Gao, N. Giuseppone, F. Schmid, A. Walther, Advanced Materials 36, 2403514 (2024).
    doi: 10.1002/adma.202403514

  13. Stability and elasticity of ultrathin sphere-patterned block copolymer films
    L. Qiao, D. Vega, F. Schmid, Macromolecules 57, 4629-4634 (2024).
    doi: 10.1021/acs.macromol.4c00460

  14. Structure and dynamic evolution of interfaces between polymer solutions and gels and polymer interdiffusion: A Molecular dynamics study
    J. A. Vishnu, T. Linder, S. Seiffert, F. Schmid, Macromolecules, 57, 5545 (2024).
    doi: 10.1021/acs.macromol.4c00459

  15. Dynamics of droplets moving on lubricated polymer brushes
    R. Badr, L. Hauer, D. Vollmer, F. Schmid, Langmuir 40, 12368 (2024).
    doi: 10.1021/acs.langmuir.4c00400

  16. How boundary interactions dominate emergent driving of passive probes in active matter
    J. Shea, G. Jung, F. Schmid, Journal of Physics A 57, 235006 (2024).
    doi: 10.1088/1751-8121/ad4ad7

  17. A comprehensive approach to characterize navigation instruments for magnetic guidance in biological systems
    P. Blümler, F. Raudzus, F. Schmid, Scientific Reports 14, 7879 (2024).
    doi: 10.1038/s41598-024-58091-x

  18. Project RACCOON: Automated construction of PDB files for polymers and polymer peptide conjugates
    M. L. Obenauer, K. N. Spauszus, P. Besenius, F. Schmid, J. Open Source Software 9, 6293 (2024).
    doi: 10.21105/joss.06293

  19. Force renormalization for probes immersed in an active bath
    J. Shea, G. Jung, F. Schmid, Soft Matter 20, 1767 (2024).
    doi: 10.1039/D3SM01387A

  20. The effect of electric fields on the structure of water/acetonitrile mixtures
    A. I. Sourpis, N. C. Forero-Martinez, F. Schmid, J. Electrochem. Soc. 170, 083508 (2023).
    doi: 10.1149/1945-7111/acef61

  21. Viscosity of flexible and semiflexible ring melts - molecular origins and flow-induced segregation
    R. Datta, F. Berressem, F. Schmid, A. Nikoubashman, P. Virnau, Macromolecules 56, 7247 (2023).
    doi: 10.1021/acs.macromol.3c01046

  22. One step closer to the understanding of the relationship IDR-LCR-Structure
    M. Gonçalves-Kulik, F. Schmid, M. A. Andrade-Navarro, Genes 14, 1711 (2023).
    doi: 10.3390/genes14091711

  23. Stability of Branched Tubular Membrane Structures
    M. Jung, G. Jung, F. Schmid, Phys. Rev. Lett. 130, 148401 (2023).
    doi: 10.1103/PhysRevLett.130.148401

  24. Understanding and Modeling Polymers: The Challenge of Multiple Scales
    F. Schmid, ACS Polymers Au 3, 28 (2023). (Invited Perspective)
    doi: 10.1021/acspolymersau.2c00049

  25. Compression and interpenetration of adsorption-active brushes
    A.S. Ivanova, A.A. Polotsky, A.M. Skvortsov, L.I. Klushin, F. Schmid, J. Chem. Phys. 158, 024902 (2023).
    doi: 10.1063/5.0130347

  26. Virtual Issue on Polymers: Recent Advances from a Physical Chemistry Perspective (Editorial)
    F. Schmid, J. Phys. Chem. B. 126, 42, 8359 (2022).
    doi: 10.1021/acs.jpcb.2c06378

  27. Cloaking transition of droplets on lubricated brushes
    R. Badr, L. Hauer, D. Vollmer, F. Schmid, J. Phys. Chem. B, 126,36, 7047 (2022).
    doi: 10.1021/acs.jpcb.2c04640

  28. Passive probe particle in an active bath: Can we tell it is out of equilibrium?
    J. Shea, G. Jung, F. Schmid, Soft Matter, 18, 6965 (2022).
    doi: 10.1039/D2SM00905F

  29. Low complexity induces structure in protein regions predicted as intrinsically disordered
    M. Gonçalves-Kulik, P. Mier, K. Kastano, J. Cortés, P. Bernadó, F. Schmid, M. A. Andrade-Navarro, Biomolecules 12, 1098 (2022).
    doi: 10.3390/biom12081098

  30. Editorial: Multiscale simulation methods for soft matter systems
    F. Schmid, J. Phys.: Cond. Matter 34, 160401 (2022).
    doi: 10.1088/1361-648X/ac5071

  31. Adsorption-active polydisperse brush with tunable molecular mass distribution
    A.S. Ivanova, A.A. Polotsky, A.M. Skvortsov, L.I. Klushin, F. Schmid, J. Chem. Phys. 156, 044902 (2022).
    doi: 10.1063/5.0076382

  32. pH-dependent behavior of ionizable cationic lipids in mRNA-carrying lipoplexes investigated by molecular dynamics simulations
    G. Settanni, W. Brill, H. Haas, F. Schmid, Macromolecular Rapid Communications 43, 2100683 (2022).
    doi:10.1002/marc.202100683
    Highlighted in Advanced Science News

  33. Fluctuation-Dissipation Relations far from equilibrium: A case study
    G. Jung, F. Schmid, Soft Matter 17, 6413 (2021).
    doi:10.1039/D1SM00521A

  34. Introducing memory in coarse-grained simulations
    V. Klippenstein, M. Tripathy, G. Jung, F. Schmid, N. van der Vegt, J. Phys. Chem. B, 125, 4931 (2021).
    doi:10.1021/acs.jpcb.1c01120

  35. Shear-thinning in oligomer melts: Molecular origins and Applications
    R. Datta, L. Yelash, F. Schmid, F. Kummer, M. Oberlack, M. Lukacova-Medvidova, P. Virnau, Polymers 13, 2806 (2021).
    doi:10.3390/polym13162806

  36. Dynamic coarse-graining of polymer systems using mobility functions
    B. Li, K. Daoulas, F. Schmid, J. Phys.: Cond. Matter 33, 194004 (2021).
    doi:10.1088/1361-648X/abed1b

  37. Model reduction techniques for the computation of extended Markov parameterizations for generalized Langevin equations
    N. Bockius, J. Shea, G. Jung, F. Schmid, M. Hanke, J. Phys.: Cond. Matter 33, 214003 (2021).
    doi:10.1088/1361-648X/abe6df

  38. Adsorption-active diblock copolymers as universal agents for unusual barrier-free transitions in stimuli-responsive brushes
    S. Qi, L.I. Klushin, A.M. Skvortsov, F. Schmid, Macromolecules 54, 2592 (2021).
    doi:10.1021/acs.macromol.0c02095

  39. Polymer brushes with reversibly tunable grafting density
    L.I. Klushin, A.M. Skvortsov, A.A. Polotsky, A.S. Ivanova, F. Schmid, J. Chem. Phys. 154, 074904 (2021).
    doi:10.1063/5.0038202

  40. Optimizing the nickel boride layer thickness in a spectroelectrochemical ATR-FTIR thin-film flow cell applied in glycerol oxidation
    S. Cychy, S. Lechler, Z. Huang, M. Braun, A.-C. Brix, P. Blümler, C. Andronescu, F. Schmid, W. Schuhmann, M. Muhler Chinese Journal of Catalysis 42, 2206 (2021).
    doi:10.1016/S1872-2067(20)63766-4

  41. Defects and defect engineering in soft matter
    A. Jangizehi, F. Schmid, P. Besenius, K. Kremer, S. Seiffert, Soft Matter 16, 10809-10859 (2020).
    doi:10.1039/d0sm01371d

  42. Dynamic self-consistent field approach for studying kinetic processes in multiblock copolymer melts
    F. Schmid, B. Li, Polymers 12, 2205 (2020).
    [Link] doi:10.3390/polym12102205

  43. Editorial: Characteristics of Impactful Computational Contributions to The Journal of Physical Chemistry B
    P. Jungwirth, E. J. Maginn, B. Roux, F. Schmid, J.-E. Shea, J. Phys. Chem. B 124, 5093 (2020).
    doi:10.1021/acs.jpcb.0c04149

  44. Using copolymers to design tunable stimuli-reponsive brushes
    S. Qi, L.I. Klushin, A.M. Skvortsov, F. Schmid, Macromolecules 53, 13 (2020).
    doi:10.1021/acs.macromol.0c00674

  45. Bottom-up construction of dynamic density functional theories for inhomogeneous polymer systems from microscopic simulations
    S. Mantha, S. Qi, F. Schmid, Macromolecules 53, 3409 (2020).
    doi:10.1021/acs.macromol.0c00130
    Featured in Advances in Engineering

  46. Trans-Cyclooctene-Functionalized PeptoBrushes with Improved Reaction Kinetics of the Tetrazine Ligation for Pretargeted Nuclear Imaging
    E. J. Steen, J. T. Jorgensen, K. Johann, K. Norregaard, B. Sohr, D. Svatunek, A. Birke, V. Shalgunov, P. E. Edem, R. Rossin, C. Seidl, F. Schmid, M. S. Robillard, J. L. Kristensen, H. Mikula, M. Barz, A. Kjaer, M. M. Herth, ACS Nano 14, 568 (2020).
    doi:10.1021/acsnano.9b06905

  47. Quorum-sensing active particles with discontinuous motility
    A. Fischer, F. Schmid, T. Speck, Phys. Rev. E 101, 012601 (2020).
    doi:10.1103/PhysRevE.101.012601

    Erratum: Quorum-sensing active particles with discontinuous motility
    A. Fischer, F. Schmid, T. Speck, Phys. Rev. E 102, 059903 (2020).
    doi:10.1103/PhysRevE.102.059903

  48. Shear modulus of an irreversible diblock copolymer network from self-consistent field theory
    S. Qi, J. Zhou, F. Schmid, Macromolecules 52, 9569 (2019).
    doi:10.1021/acs.macromol.9b09851

  49. Order-order phase transitions induced by supercritical carbon dioxide in triblock copolymer thin films
    A. Abate, G. Vu, C. Piqueras, M.C. del Barrio, L. Gomez, G. Catalini, F. Schmid, D. Vega, Macromolecules 52, 7786 (2019).
    doi:10.1021/acs.macromol.9b01278

  50. Anomalous Slowdown of Polymer Detachment Dynamics on Carbon Nanotubes
    D.A. Vega, A. Milchev, F. Schmid, M. Febbo, Phys. Rev. Lett. 122, 218003 (2019).
    doi:10.1103/PhysRevLett.122.218003

  51. The molecular Lego movie
    A. Nikoubashman, F. Schmid, Nature Chemistry 11, 298 (2019).
    doi:10.1038/s41557-019-0243-8
    Invited News and Views article.

  52. Frequency-dependent dielectric polarizability of flexible polyelectrolytes in electrolyte solution: A Dissipative Particle Dynamics simulation
    G. Jung, S. Kasper, F. Schmid, J. Electrochem. Soc. 166, B3194-B3202 (2019).
    doi:10.1149/2.0231909jes

  53. Polydispersity effects on interpenetration in compressed brushes
    L.I. Klushin, A.M. Skvortsov, S. Qi, T. Kreer, F. Schmid, Macromolecules 52, 1810 (2019).
    doi:10.1021/acs.macromol.8b02361

  54. Structure of lateral heterogeneities in a coarse-grained model for multicomponent membranes
    S. Meinhardt, F. Schmid, Soft Matter 15, 1942 (2019).
    doi:10.1039/c8sm02261e
    Featured on the cover of the journal.

  55. How ill-defined constituents produce well-defined nanoparticles: Effect of polymer dispersity on the uniformity of copolymeric micelles
    S. Mantha, S. Qi, M. Barz, F. Schmid, Phys. Rev. Materials 3, 026002 (2019).
    doi:10.1103/PhysRevMaterials.3.026002
    Highlighted as Editor's Suggestion.

  56. Structure and dynamics of B2O3 melts and glasses: From ab initio to classical molecular dynamics simulations
    C. Scherer, F. Schmid, M. Letz, J. Horbach, Computational Materials Science 159, 73-85 (2019).
    doi:10.1016/j.commatsci.2018.12.001

  57. Theoretical approaches to amphiphilic polymer conetworks
    F. Schmid, Chapter 11 in Amphiphilic polymer co-networks: Synthesis, properties, modelling and application , pp. 239-261, Edt. Costas Patrickios, RSC publishing (2019).
    doi:10.1039/9781788015769-00239

  58. Generalized Brownian dynamics: Construction and numerical integration of non-Markovian particle-based models
    G. Jung, M. Hanke, F. Schmid, Soft Matter 14, 9368 (2018).
    doi:10.1039/C8SM01817K

  59. Polysarcosine and poly(ethylene-glycol) interactions with proteins investigated using molecular dynamics simulations
    G. Settanni, T. Schäfer, C. Muhl, M. Barz, F. Schmid, Computational and Structural Biotechnology Journal 16, 543 (2018).
    doi:10.1016/j.csbj.2018.10.012

  60. Polydisperse brush with the linear density profile
    L.I. Klushin, A.M. Skvortsov, S. Qi, F. Schmid, Polymer Science, Series C 60, Suppl. 2, pp. S84-S94 (2018).
    doi:10.1134/S1811238218020121

  61. Curvature as a guiding field for patterns in thin block copolymer films
    G.T. Vu, A.A. Abate, L.R. Gomez, A.D. Pezzutti, R.A. Register, D.A. Vega, F. Schmid, Phys. Rev. Lett. 121, 087801 (2018).
    doi:10.1103/PhysRevLett.121.087801
    Featured in Physics

  62. Tuning transition properties of stimuli-responsive brushes by polydispersity
    S. Qi, L.I. Klushin, A.M. Skvortsov, M. Liu, J. Zhou, F. Schmid, Adv. Func. Mater. 28, 1800745 (2018).
    doi:10.1002/adfm.201800745

  63. Critical behavior of active Brownian particles
    J.T. Siebert, F. Dittrich, F. Schmid, K. Binder, T. Speck, P. Virnau, Phys. Rev. E 98, 03061(R) (2018).
    doi:10.1103/PhysRevE.98.030601

  64. Phase transitions in single macromolecules: Loop-stretch transition versus loop-adsorption transition in end-grafted polymer chains
    S. Zhang, S. Qi, L.I. Klushin, A.M. Skvortsov, D. Yan, F. Schmid, J. Chem. Phys. 148, 044903 (2018).
    doi:10.1063/1.5013346

  65. Hybrid particle-continuum simulations coupling Brownian dynamics and local dynamic density functional theory
    S. Qi, F. Schmid, Soft Matter 13, 7938 (2017).
    doi:10.1039/C7SM01749A

  66. Frequency-dependent hydrodynamic interactions between two solid spheres
    G. Jung, F. Schmid, Physics of Fluids 29, 126101 (2017).
    doi:10.1063/1.5001565

  67. Potassium triggers a reversible specific stiffness transition of polyethylene glycol
    L. Tüting, W. Ye, G. Settanni, F. Schmid, B. Wolf, R. Ahijado-Guzman, C. Sönnichsen, J. Phys. Chem. C 121, 22396 (2017).
    doi:10.1021/acs.jpcc.7b08987

  68. Dynamic density functional theories for inhomogeneous polymer systems compared to Brownian dynamics simulations
    S. Qi, F. Schmid, Macromolecules 50, 9831 (2017).
    doi:10.1021/acs.macromol.7b02017

  69. Anomalous critical slowdown at a first order phase transition in single polymer chains
    S. Zhang, S. Qi, L.I. Klushin, A.M. Skvortsov, D. Yan, F. Schmid, J. Chem. Phys. 147, 064902 (2017).
    doi:10.1063/1.4997435

  70. Simulating Copolymeric nanoparticle assembly in the co-solvent method: How mixing rates control final particle sizes and morphologies
    S. Keßler, K. Drese, F. Schmid, Polymer 126C, 9-18 (2017).
    doi:10.1016/j.polymer.2017.07.057

  71. Iterative reconstruction of memory kernels
    G. Jung, M. Hanke, F. Schmid, J. Chemical Theory and Computation 13, 2481 (2017).
    doi:10.1021/acs.jctc.7b00274

  72. Interactions between proteins and poly(ethylene-glycol) investigated using Molecular Dynamics simulations
    G. Settanni, J. Zhou, F. Schmid, J. Phys.: Conf. Ser. 921, 012002 (2017).
    doi:10.1088/1742-6596/921/1/012002

  73. Self-assembly of polymeric particles in Poiseuille flow: A hybrid Lattice Boltzmann / External Potential Dynamics simulation study
    J. Heuser, G. J. A. Sevink, F. Schmid, Macromolecules 50, 4474 (2017).
    doi:10.1021/acs.macromol.6b2684

  74. The influence of block ionomer microstructure on polyplex properties: Can simulations help to understand differences in transfection efficiency?
    P. Heller, B. Weber, J. Zhou, D. Hobernik, M. Bros, F. Schmid, M. Barz, Small 13, 1603694 (2017).
    doi:10.1002/smll.201603694

  75. Physical mechanisms of micro- and nanodomain formation in multicomponent lipid membranes
    F. Schmid, Biochimica et Biophysica Acta 1859, 509 (2017).
    doi:10.1016/j.bbamem.2016.10.021

  76. Combining cell-based hydrodynamics with hybrid particle-field simulations: Efficient and realistic simulation of structuring dynamics
    G. J. A. Sevink, F. Schmid, T. Kawakatsu, G. Milano, Soft Matter 13, 1594 (2017).
    doi:10.1039/C6SM02252A

  77. Protein corona composition of PEGylated nanoparticles correlates strongly with amino acid composition of protein surface
    G. Settanni, J. Zhou, T. Suo, S. Schöttler, K. Landfester, F. Schmid, V. Mailänder, Nanoscale 9, 2138 (2017).
    doi:10.1039/C6NR07022A

  78. Negative thermal expansion of quartz glass at low temperatures: An ab initio simulation study
    C. Scherer, J. Horbach, F. Schmid, M. Letz, J. Non-crystalline Solids 468, 82 (2017).
    doi:10.1016/j.jnoncrysol.2017.04.035

  79. Polydisperse polymer brushes: Internal structure, critical behavior, and interaction with flow
    S. Qi, L.I. Klushin, A.M. Skvortsov, F. Schmid, Macromolecules 49, 9665 (2016).
    doi:10.1021/acs.macromol.6b02026

  80. Shear-aligned block copolymer monolayers as seeds to control the orientational order in cylinder-forming block copolymer thin films
    A. Abate, G. Vu, A. Pezzutti, N. Garcia, R. Davis, F. Schmid, R. Register, D. Vega, Macromolecules 49, 7588 (2016).
    doi:10.1021/acs.macromol.6b00816

  81. A hybrid particle-continuum resolution method and its application to a homopolymer solution
    S. Qi, H. Behringer, T. Raasch, F. Schmid, Eur. Phys. J. Spec. Top. 225, 1527 (2016).
    doi:10.1140/epjst/e2016-60096-8

  82. Computing bulk and shear viscosities from simulations of fluids with dissipative and stochastic interactions
    G. Jung, F. Schmid, J. Chem. Phys. 144, 204104 (2016).
    doi:10.1063/1.4950760

  83. Complex formation between polyelectrolytes and oppositely charged oligoelectrolytes
    J. Zhou, M. Barz, F. Schmid, J. Chem. Phys. 144, 164902 (2016).
    doi:10.1063/1.4947255

  84. Modeling size controlled nanoparticle precipitation with the co-solvency method by spinodal decomposition
    S. Keßler, F. Schmid, K. Drese, Soft Matter 12, 7231 (2016).
    doi:10.1039/C6SM01198E

  85. Collective behavior of quorum-sensing run-and-tumble particles in confinement
    M. Rein, N. Heinß, F. Schmid, T. Speck, Phys. Rev. Lett. 116, 058102 (2016).
    doi:10.1103/PhysRevLett.116.058102

  86. Molecular dynamics simulations of the initial adsorption stages of fibrinogen on mica and graphite surfaces
    S. Köhler, F. Schmid, G. Settanni, Langmuir 48, 13180 (2015).
    doi:10.1021/acs.langmuir.5b00371

  87. Statistical properties of linear-hyperbranched graft copolymers prepared via ''hypergrafting'' of ABm monomers from linear B-functional core chains: A Molecular Dynamics simulation
    H. Rabbel, H. Frey, and F. Schmid, J. Chem. Phys. 143, 243125 (2015).
    doi:10.1063/1.4935371

  88. Interplay of curvature-induced micro- and nanodomain structures in multicomponent lipid bilayers
    L. Brodbek, F. Schmid, Int J Adv Eng Sci Appl Math 8, 111 (2016).
    doi:10.1007/s12572-015-0152-z ; SharedIt link

  89. Computer simulations of single particles in external electric fields
    J. Zhou and F. Schmid, Soft Matter 11, 6728 (2015).
    doi:10.1039/C5SM01485A

  90. Stimuli-responsive brushes with active minority components: Monte Carlo study and analytical theory
    S. Qi, L.I. Klushin, A.M. Skvortsov, A.A. Polotsky, F. Schmid, Macromolecules 48, 3775 (2015).
    doi:10.1021/acs.macromol.5b00563

  91. The internal dynamics of fibrinogen and its implications for coagulation and adsorption
    S. Köhler, F. Schmid, G. Settanni, PLOS Comput. Biol. 11, e1004346 (2015).
    doi:10.1371/journal.pcbi.1004346

  92. Solvent determines nature of effective interactions between nanoparticles in polymer brushes
    Z. Lian, S. Qi, J. Zhou, F. Schmid, J. Phys. Chem. B 119, 4099 (2015).
    doi:10.1021/jp511911g

  93. Morphology control in biphasic hybrid systems of semiconducting materials
    F. Mathias, A. Fokina, K. Landfester, W. Tremel, F. Schmid, K. Char, R. Zentel, Macromolecular Rapid Communications 36, 959 (2015).
    doi:10.1002/marc.201400688

  94. An efficient dissipative particle dynamics-based algorithm for simulating electrolyte solutions
    S. Medina, J. Zhou, Z.-G. Wang, F. Schmid, J. Chem. Phys. 142, 024103 (2015).
    doi:10.1063/1.4905102

  95. Flows and mixing in channels with misaligned superhydrophobic walls
    T. V. Nizkaya, E. S. Asmolov, J. Zhou, F. Schmid, O. I. Vinogradova, Phys. Rev. E 91, 033020 (2015).
    doi:10.1103/PhysRevE.91.033020

  96. The structure of cholesterol in lipid rafts
    L. Toppozini, S. Meinhardt, C. L. Armstrong, Z. Yamani, N. Kuvcerka, F. Schmid, M. Rheinstädter, Phys. Rev. Lett. 113, 228101 (2014).
    doi:10.1103/PhysRevLett.113.228101

  97. Sharp and fast: Sensors and switches based on polymer brushes with adsorption-active minority chains
    L.I. Klushin, A.M. Skvortsov, A.A. Polotsky, S. Qi, F. Schmid, Phys. Rev. Lett. 113, 068303 (2014).
    See also APS focus story in Physics 7, 83 (2014).
    doi:10.1103/PhysRevLett.113.068303

  98. Strategy for good dispersion of well-defined tetrapods in semiconducting polymer materials
    J. Lim, L. zur Borg, S. Dolezel, F. Schmid, K. Char, R. Zentel, Macromolecular Rapid Communications 35, 1685 (2014).
    doi:10.1002/marc.201400314

  99. Computational studies of biomembrane systems: Theoretical considerations, computer simulation models, and applications
    M. Deserno, K. Kremer, H. Paulsen, C. Peter, F. Schmid, Advances in Polymer Science 260, 237 (2014).
    doi:10.1007/12_2013_258

  100. On ripples and rafts: Curvature induced nanoscale structures in lipid membranes
    F. Schmid, S. Dolezel, O. Lenz, S. Meinhardt, J. Physics: Conference Series 487, 012004 (2014).
    doi:10.1088/1742-6596/487/1/012004

  101. Computer simulation of flow past superhydrophobic striped surfaces
    J. Zhou, A. V. Belyaev, E. S. Asmolov, O. I. Vinogradova, F. Schmid, NIC Series 47, 407 (2014).

  102. The flexibility of fibrinogen and its initial adsorption stages at graphite and mica surfaces
    S. Köhler, F. Schmid, G. Settanni, NIC Series 47, 117 (2014).

  103. A Dissipative-Particle-Dynamics model for simulating dynamics of charged colloids
    J. Zhou, F. Schmid, in 'High performance computing in Science and Engineering' 13, W. E. Nagel et al eds., Springer (2014).

  104. Computer simulations of charged colloids in alternating electric fields
    J. Zhou, F. Schmid, Eur. Phys. J.: Special topics 222, 2911 (2013).
    doi:10.1140/epjst/e2013-02066-y

  105. Effective slippage on superhydrophobic trapezoidal grooves
    J. Zhou, E.S. Asmolov, F. Schmid, O.I. Vinogradova, J. Chem. Phys. 139, 174708 (2013).
    doi:10.1063/1.4827867

  106. Self-consistent field approach for crosslinked copolymer materials
    F. Schmid, Phys. Rev. Lett. 111, 028303 (2013).
    doi:10.1103/PhysRevLett.111.028303

  107. Elastic properties and line tension of self-assembled bilayer membranes
    J. Li, K.A. Pastor, A.-C. Shi, F. Schmid, J. Zhou, Phys. Rev. E 88, 012718 (2013).
    doi:10.1103/PhysRevE.88.012718

  108. Hyperbranched graft-copolymers by "Hypergrafting" of ABm monomers from polydisperse macroinitiator cores: Theory meets synthesis
    C. Schüll, H. Rabbel, F. Schmid, H. Frey, Macromolecules 46, 5823 (2013).
    doi:10.1002/ma401119r

  109. Dynamic and dielectric response of charged colloids in electrolyte solutions to external electric fields
    J. Zhou, R. Schmitz, B. Dünweg, F. Schmid, J. Chem. Phys. 139, 024901 (2013).
    doi:10.1063/1.4812692

  110. Using field theory to construct hybrid particle-continuum simulation schemes with adaptive resolution for soft matter systems
    S. Qi, H. Behringer, F. Schmid, New J. Physics 15, 125009 (2013).
    doi:10.1088/1367-2630/15/12/125009

  111. A hybrid particle-continuum model in soft-condensed matter simulations
    S. Qi, H. Behringer, F. Schmid, NIC Series 46, 193 (2013).

  112. Effective slip-length tensor for a flow over weakly stripping stripes
    E.S. Asmolov, J. Zhou, F. Schmid, O.I. Vinogradova, Phys. Rev. E 88, 023004 (2013).
    doi:10.1103/PhysRevE.88.023004

  113. Monolayer curvature stabilizes nanoscale raft domains in mixed lipid bilayers
    S. Meinhardt, R.L.C. Vink, F. Schmid, PNAS 110, 4476 (2013).
    doi:10.1073/pnas.1221075110

  114. AC-field induced polarization for uncharged colloids in salt solution: A Dissipative Particle Dynamics simulation
    J. Zhou, F. Schmid, Eur. Phys. J. E 36, 33 (2013).
    doi:10.1140/epje/i2013-13033-0

  115. A model for rod-coil block copolymers
    S. Dolezel, H. Behringer, F. Schmid, Polymer Science, Ser. C 55, 70 (2013).
    doi:10.1134/S1811238213060015

  116. Interactions of membranes with coarse-grain proteins: A comparison
    J. Neder, P. Nielaba, B. West, F. Schmid, New J. Physics 14, 125017 (2012).
    doi:10.1088/1367-2630/14/12/125017

  117. Exploiting seeding of random number generators for efficient domain decomposition parallelization of dissipative particle dynamics
    Y. Afshar, F. Schmid, A. Pishevar, S. Worley, Comp. Phys. Comm. 184, 1119 (2013).
    doi:10.1016/j.cpc.2012.12.003

  118. A new algorithm for simulating flows of conducting fluids in the presence of electric fields
    M. Joulaian, A. Pishevar, S. Khajepor, F. Schmid, Y. Afshar, Comp. Phys. Comm. 183, 2405 (2012).
    doi:10.1016/j.cpc.2012.06.008

  119. Fluctuations in lipid bilayers: Are they understood?
    F. Schmid, Biophys. Rev. and Lett. 8, 1 (2013).
    doi:10.1142/S1793048012300113

  120. Anisotropic flow in striped superhydrophobic channels
    J. Zhou, A. Belyaev, F. Schmid, O. Vinogradova, J. Chem. Phys. 136, 194706 (2012).
    doi:10.1063/1.4718834

  121. Dielectric response of nanoscopic spherical colloids in alternating electric fields: A dissipative particle dynamics simulation
    J. Zhou, F. Schmid, J. Phys.: Cond. Matter 24, 464112 (2012).
    doi:10.1088/0953-8984/24/46/464112

  122. Mesoscopic simulation methods for studying flow and transport in electric fields in micro- and nanochannels
    J. Smiatek, F. Schmid, Advances in Microfluidics , Chapter 5 (invited), pp. 97-126, InTech Open Access Publisher (2012).
    doi:10.5772/35773

  123. Separation of chiral particles in nanofluidic channels
    S. Meinhardt, J. Smiatek, R. Eichhorn, F. Schmid, Phys. Rev. Lett. 108, 214504 (2012).
    doi:10.1103/PhysRevLett.108.214504

  124. Reply to Comment on: ''Are stress-free membranes really 'tensionless'?''
    F. Schmid, EPL 97, 18002 (2012).
    doi:10.1209/0295-5075/97/18002

  125. Hybrid Lattice Boltzmann / Dynamic Self-Consistent Field simulations of microphase separation and vesicle formation in block copolymer systems,
    L. Zhang, G. J. A. Sevink, F. Schmid, Macromolecules 44, 9434 (2011).
    doi:10.1021/ma2018638

  126. Membrane-mediated protein-protein interaction: A Monte Carlo study
    J. Neder, P. Nielaba, B. West, F. Schmid, Current Nanoscience 7, 656 (2011).
    doi:10.2174/157341311797483655

  127. Are stress-free membranes really 'tensionless'?
    F. Schmid, EPL 95, 28008 (2011).
    doi:10.1209/0295-5075/95/28008

  128. Theory and simulation of multiphase polymer systems
    F. Schmid, chapter 3 in Handbook of Multiphase Polymer Systems , Eds. A. Boudenne, L. Ibos, Y. Candau, S. Thomas, pp. 31-80 (Wiley, 2011).
    doi:10.1002/9781119972020.CH3

  129. Analytical model for the long-distance tracer transport in plants
    J. Bühler, G. Huber, F. Schmid, P. Blümler, Journal of Theoretical Biology 270, 70 (2011).
    doi:10.1016/j.jtbi.2010.11.005

  130. Mesoscopic simulations of electroosmotic flow and electrophoresis in nanochannels
    J. Smiatek, F. Schmid, Computer Physics Communications 182, 1941 (2011).
    doi:10.1016/j.cpc.2010.11.021

  131. A method to compute absolute free energies or enthalpies of fluids
    F. Schmid, T. Schilling, Physics Procedia 4, 131 (2010).
    doi:10.1016/j.phpro.2010.08.017

  132. Polyelectrolyte electrophoresis in nanochannels: A Dissipative Particle Dynamics simulation
    J. Smiatek, F. Schmid, J. Phys. Chem. B 114, 6266 (2010).
    doi:10.1021/jp100128p

  133. Coarse-grained simulations of membranes under tension
    J. Neder, B. West, P. Nielaba, F. Schmid, J. Chem. Phys. 132, 115101 (2010).
    doi:10.1063/1.3352583

  134. Membrane-protein interactions in lipid bilayers: Molecular simulations versus elastic theory
    B. West, F. Schmid, IAS Series Vol. 3, 279 (2010).

  135. Fluctuations and elastic properties of lipid membranes in the fluid and gel state: A coarse-grained Monte Carlo study
    B. West, F. Schmid, Soft Matter 6, 1275 (2010).
    doi:10.1039/B920978F

  136. Computing absolute free energies of disordered structures by molecular simulations
    T. Schilling, F. Schmid, J. Chem. Phys. 131, 231102 (2009).
    doi:10.1063/1.3274951

  137. Random copolymer adsorption: Morita approximation compared to exact numerical calculations
    A.A. Polotsky, A. Degenhard, F. Schmid, J. Chem. Phys. 131, 04903 (2009).
    doi:10.1063/1.3193723

  138. Mesoscopic simulations of the counterion-induced electroosmotic flow in nanochannels - a comparative study
    J. Smiatek, M. Sega, C. Holm, U.D. Schiller, F. Schmid, J. Chem. Phys. 130, 244702 (2009).
    doi:10.1063/1.3152844

  139. Toy amphiphiles on the computer: What can we learn from generic models?
    F. Schmid, Macromolecular Rapid Communications 30, 741 (2009).
    doi:10.1002/marc.200800750

  140. Membrane-protein interactions in a generic coarse-grained model for lipid bilayers
    B. West, F.L.H. Brown, F. Schmid, Biophysical Journal 96, 101 (2009).
    doi:10.1529/biophysj.108.138677

  141. Influence of correlations on molecular recognition
    H. Behringer, F. Schmid, Phys. Rev. E 78, 031903 (2008).
    doi:10.1103/PhysRevE.78.031903

  142. Correlation effects in protein-protein recognition
    H. Behringer, F. Schmid, NIC-Series Vol. 40, 165-168 (2008).

  143. Spontaneous formation of complex micelles from homogeneous solution
    X. H. He, F. Schmid, Phys. Rev. Lett. 100, 137802 (2008).
    See also Physical Review Focus, Vol. 21, Story 12.
    doi:10.1103/PhysRevLett.100.137802

  144. Effective protein interactions in a coarse-grained model for lipid membranes
    B. West, F. Schmid, NIC-Series Vol. 39, 271-278 (2008).

  145. Kinetically driven helix formation during homopolymer collapse processes
    S. A. Sabeur, F. Hamdache, F. Schmid, Phys. Rev. E 77, 020802(R) (2008).
    doi:10.1103/PhysRevE.77.020802

  146. Tunable-slip boundaries for coarse-grained simulations of fluid flow
    J. Smiatek, M. P. Allen, F. Schmid, Eur. Phys. J. E 26, 115 (2008).
    doi:10.1140/epje/i2007-10311-4

  147. Coarse-grained lattice model for molecular recognition
    H. Behringer, A. Degenhard, F. Schmid, NIC-Series Vol. 36, 83-85 (2007).

  148. Coarse-grained lattice model for investigating the role of cooperativity in molecular recognition
    H. Behringer, A. Degenhard, F. Schmid, Physical Review E 76, 031914 (2007).
    doi:10.1103/PhysRevE.76.031914

  149. Fluctuating interfaces in liquid crystals
    F. Schmid, G. Germano, S. Wolfsheimer, T. Schilling, Macromolecular Symposia 252, 110 (2007).
    doi:10.1002/masy.200750611

  150. Using prenucleation to control complex copolymeric vesicle formation in solution
    X. H. He, F. Schmid, Macromolecules 39, 8908 (2006).
    doi:10.1021/ma0622478

  151. A generic model for lipid monolayers, bilayers, and membranes
    F. Schmid, D. Düchs, O. Lenz, B. West, Comp. Phys. Comm. 177, 168 (2007).
    doi:10.1016/j.cpc.2007.02.066

  152. Developing and analyzing idealized models for molecular recognition
    H. Behringer, T. Bogner, A.A. Polotsky, A. Degenhard, F. Schmid J. Biotechnology 129, 268 (2006).
    doi:10.1016/j.jbiotec.2007.01.035

  153. Structure of symmetric and asymmetric ripple phases in lipid bilayers
    O. Lenz, F. Schmid, Phys. Rev. Lett. 98, 058104 (2007).
    doi:10.1103/PhysRevLett.98.058104

  154. A thermostat for molecular dynamics of complex fluids
    M. P. Allen, F. Schmid, Mol. Simulations 33, 21 (2007).
    doi:10.1080/08927020601052856

  155. A coarse-grained lattice model for molecular recognition
    H. Behringer, A. Degenhard, F. Schmid, Phys. Rev. Lett. 97, 128101 (2006).
    doi:10.1103/PhysRevLett.97.128101

  156. Bistable anchoring of nematics on rough substrates
    F. Schmid, D. L. Cheung, Europhys. Lett. 76, 243 (2006).
    doi:10.1209/epl/i2006-10248-8

  157. Stabilization of membrane pores by packing
    D. Bicout, F. Schmid, E. Kats, Phys. Rev. E 73, 060101(R) (2006).
    doi:10.1103/PhysRevE.73.060101

  158. Dynamics of spontaneous vesicle formation in dilute solutions of amphiphilic diblock copolymers
    X. H. He, F. Schmid, Macromolecules 39, 2654 (2006).
    doi:10.1021/ma052536g

  159. Coarse-grained models of complex fluids at equilibrium and under shear
    F. Schmid, in Computer Simulations in Condensed Matter: from Materials to Chemical Biology , Vol. 2, pp. 211-258, Eds. K. Binder, G. Ciccotti, M. Ferrario (Springer, Berlin, 2006).
    doi:10.1007/3-540-35284-8_10

  160. Isotropic-nematic transition in liquid crystals confined between rough walls
    D. Cheung, F. Schmid, Chem. Phys. Lett. 418, 392 (2006).
    doi:10.1016/j.cplett.2005.11.010

  161. Approaching criticality in polymer/polymer systems
    C. Carelli, R. A. L. Jones, R. N. Young, R. Cubitt, R. Dalgliesh, F. Schmid, M. Sferrazza, Phys. Rev. E 72, 031807 (2005).
    doi:10.1103/PhysRevE.72.031807

  162. The effects of long-ranged and short-ranged forces in confined near-critical polymeric liquids
    C. Carelli, R. A. L. Jones, R. N. Young, R. Cubitt, R. Krastev, T. Gutberlet, R. Dalgliesh, F. Schmid, M. Sferrazza, Europhys. Lett. 71, 763 (2005).
    doi:10.1209/epl/i2005-10162-7

  163. Nematic-isotropic interfaces under shear: A Molecular Dynamics simulation
    G. Germano, F. Schmid, J. Chem. Phys. 123, 214703 (2005).
    doi:10.1063/1.2131065

  164. Nematic liquid crystals at rough and fluctuating interfaces
    J. Elgeti, F. Schmid, Eur. Phys. J. E 18, 407 (2005).
    doi:10.1140/epje/e2005-00051-8

  165. Fluctuations and defects in lamellar stacks of amphiphilic bilayers
    C. Loison, M. Mareschal, F. Schmid, Comp. Phys. Comm. 169, 99 (2005).
    doi:10.1016/j.cpc.2005.03.023

  166. Monte Carlo simulations of liquid crystals near rough walls
    D. Cheung, F. Schmid, J. Chem. Phys. 122, 074902 (2005).
    doi:10.1063/1.1844495

  167. Molecular recognition in a lattice model: An enumeration study
    T. Bogner, A. Degenhard, F. Schmid, Phys. Rev. Lett. 93, 268108 (2005).
    doi:10.1103/PhysRevLett.93.268108

  168. Two-state migration of DNA in a structured Microchannel
    M. Streek, F. Schmid, T. T. Duong, D. Anselmetti, A. Ros, Phys. Rev. E 71, 011905 (2005).
    doi:10.1103/PhysRevE.71.011905

  169. Incorporating fluctuations and dynamics in Self-Consistent Field theories for polymer blends
    M. Müller, F. Schmid, in Advances in Polymer Science 185, pp. 1-85 (Springer Verlag, Berlin, 2005).
    doi:10.1007/b136794

  170. Polymer adsorption onto random planar surfaces: Interplay of polymer and surface correlations
    A.A. Polotsky, F. Schmid, A. Degenhard, J. Chem. Phys. 121, 4853 (2004).
    doi:10.1063/1.1778137

  171. Formation and structure of the microemulsion phase in ternary AB + A + B polymeric emulsions
    D. Düchs, F. Schmid, J. Chem. Phys. 121, 2798 (2004).
    doi:10.1063/1.1768152

  172. Pores in bilayer membranes of amphiphilic molecules: Coarse-grained Molecular Dynamics simulations compared with simple mesoscopic models
    C. Loison, M. Mareschal, F. Schmid, J. Chem. Phys. 121, 1890 (2004).
    doi:10.1063/1.1752884

  173. A density functional theory study of the confined soft ellipsoid fluid
    D. Cheung, F. Schmid, J. Chem. Phys. 120, 9185 (2004).
    doi:10.1063/1.1703522

  174. Influence of sequence correlations on the adsorption of random copolymers onto homogeneous planar surfaces
    A.A. Polotsky, F. Schmid, A. Degenhard, J. Chem. Phys. 120, 6246 (2004).
    doi:10.1063/1.1647045

  175. A simple computer model for liquid lipid bilayers
    O. Lenz, F. Schmid, J. Mol. Liquids 117, 147 (2005).
    doi:10.1016/j.molliq.2004.08.008

  176. Mechanisms of DNA separation in entropic trap arrays: A Brownian Dynamics simulation
    M. Streek, F. Schmid, T. T. Duong, A. Ros, J. Biotechnology 112, 79 (2004).
    doi:10.1016/j.jbiotec.2004.04.021

  177. Amphiphiles at interfaces: Simulation of structure and phase behavior
    F. Schmid, D. Düchs, O. Lenz, C. Loison, in ``Computational Soft Matter: From Synthetic Polymers to Proteins'', Lecture Notes, NIC-Series Vol. 23, 323 (2004).

  178. Fluctuations in polymer blends
    D. Düchs, F. Schmid, NIC-Series Vol. 20, 343 (2004).

  179. Simulation of nematic-isotropic phase coexistence in liquid crystals under shear
    G. Germano, F. Schmid, NIC-Series Vol. 20, 311 (2004).

  180. Size dependent free solution DNA electrophoresis in structured microfluidic systems
    T. T. Duong, G. Kim, R. Ros, M. Streek, F. Schmid, J. Brugger, A. Ros, D. Anselmetti, Microelectronic Engineering, 67, 905 (2003).
    doi:10.1016/S0167-9317(03)00153-9

  181. Gel-free electrophoresis of lambda- and T2-DNA in structured microfluidic devices
    T. T. Duong, M. Streek, F. Schmid, A. Ros, D. Anselmetti, Schmid, Proceedings of μ-TAS 2003 1, 749-752 (2003).

  182. Fluctuation effects in ternary AB+A+B polymeric emulsions
    Dominik Düchs, Venkat Ganesan, Glenn H. Fredrickson, Friederike Schmid, Macromolecules, 36, 9237 (2003).
    doi:10.1021/ma030201y

  183. Thermal fluctuations in a lamellar phase of a binary amphiphile-solvent mixture: a molecular dynamics study
    Claire Loison, Michel Mareschal, Kurt Kremer, Friederike Schmid, J. Chem. Phys. 119, 13138 (2003).
    doi:10.1063/1.1626634

  184. Local structure in nematic and isotropic liquid crystals
    Nguyen Hoang Phuong, Friederike Schmid, J. Chem. Phys. 119, 1214 (2003).
    doi:10.1063/1.1577322

  185. Density functional for anisotropic fluids
    G. Cinacchi, F. Schmid, J. Physics: Cond. Matter, 14, 12223 (2002).
    doi:10.1088/0953-8984/14/46/323

  186. Simulations of liquid crystals: bulk structure and interfacial properties
    N. Akino, G. Germano, N. H. Phuong, F. Schmid, M. P. Allen, NIC-Series Vol. 9, 335 (2002).
    doi:10.1063/1.1481375

  187. Surface anchoring on layers of grafted liquid-crystalline chain molecules: A computer simulation
    H. Lange, F. Schmid, J. Chem. Phys. 117, 362 (2002).
    doi:10.1063/1.1481375

  188. Spatial order in liquid crystals: Computer simulations of systems of ellipsoids
    F. Schmid, Nguyen H. Phuong, in ``Morphology of Condensed Matter: Physics and Geometry of Spatially Complex Systems'', p. 172, Lecture Notes in Physics, K. Mecke and D. Stoyan eds., Springer Verlag (2002).
    doi:10.1007/3-540-45782-8_7

  189. An anchoring transition at surfaces with grafted liquid-crystalline chain molecules
    H. Lange, F. Schmid, Eur. Phys. J. E 7, 175 (2002).
    doi:doi.org/10.1140/epje/i200101098

  190. Wetting of a symmetrical binary fluid on a wall
    N. Wilding, F. Schmid, Computer Physics Communication 147, 149 (2002).
    doi: 10.1103/PhysRevE.63.031201

  191. Surface anchoring on liquid crystalline polymer brushes
    H. Lange, F. Schmid, Computer Physics Communication 147, 276 (2002).
    doi:10.1016/S0010-4655(02)00260-6

  192. The direct correlation function in nematic liquid crystals from computer simulation
    N. H. Phuong, G. Germano, F. Schmid, Computer Physics Communication 147, 350 (2002).
    doi:10.1016/S0010-4655(02)00302-8

  193. Elastic constants from direct correlation functions in nematic liquid crystals: A computer simulation study
    N. H. Phuong, G. Germano, F. Schmid, J. Chem. Phys 115, 7227 (2001).
    doi:10.1063/1.1404388

  194. Critical phenomena at the surface of systems undergoing a bulk first order transition: Are they understood?
    K. Binder, F. F. Haas, and F. Schmid, "Computer Simulation Studies in Condensed Matter Physics" XIV, p. 85-96, Eds. D. P. Landau, S. P. Lewis, and H. B. Schüttler (Springer, Heidelberg, 2002).
    doi:10.1007/978-3-642-59406-9_13

  195. Phase behaviour of amphiphilic monolayers: Theory and simulation
    D. Düchs, F. Schmid, J. Phys.: Cond. Matter 13, 4853 (2001).
    doi:10.1088/0953-8984/13/21/313

  196. Molecular Dynamics study of the nematic-isotropic interface
    N. Akino, F. Schmid, M. P. Allen, Phys. Rev. E 63, 041706 (2001).
    doi:10.1103/PhysRevE.63.041706

  197. Computer simulations of self-assembled monolayers
    F. Schmid, C. Stadler, D. Düchs, J. Phys: Cond. Matter 13, 8653 (2001).
    doi:10.1088/0953-8984/13/38/308

  198. Wetting of a symmetrical binary fluid mixture on a wall
    F. Schmid, N. B. Wilding, Phys. Rev. E 63, 031201 (2001).
    doi:10.1016/S0010-4655(02)00234-5

  199. "Intrinsic" profiles and capillary waves at interfaces between coexisting phases in polymer blends
    K. Binder, M. Müller, F. Schmid, Adv. in Colloid and Interface Science 94, 237 (2001).
    doi:10.1016/S0001-8686(01)00064-1

  200. Surface tension of the isotropic-nematic interface
    A. J. McDonald, M. P. Allen, F. Schmid, Phys. Rev. E 63, 010701(R) (2001).
    doi:10.1103/PhysRevE.63.010701

  201. Surface induced disorder in body-centered cubic alloys
    F.F. Haas, F. Schmid, K. Binder, Phys. Rev. B. 61, 15077 (2000).
    doi:10.1103/PhysRevB.61.15077

  202. Order and disorder phenomena at surfaces of binary alloys
    F.F. Haas, F. Schmid, K. Binder, in ''Properties of Inorganic Solids 2'', 77, Kluwer Academic, New York (2000).
    doi:10.1007/978-1-4615-1205-9_7

  203. Systems involving surfactants
    F. Schmid, Chapter 13 of ``Computational methods in colloid and interface science'', p. 631, edt. M. Borowko, Marcel Dekker inc., 2000.
    In doi:10.1201/9780429115813

  204. Phase behavior of grafted chain molecules: Effect of head size and chain length
    C. Stadler, F. Schmid, J. Chem. Phys. 110, 9697 (1999).
    doi:10.1063/1.478934

  205. Short grafted chains: Monte Carlo simulations of a model for monolayers of amphiphiles
    C. Stadler, H. Lange, F. Schmid, Phys. Rev. E 59, 4248 (1999).
    doi:10.1103/PhysRevE.59.4248

  206. How simulations can clarify phase transitions of complex materials
    K. Binder, M. Müller, F. Schmid, Computing in Science and Engineering 1, Vol. 3, 10 (1999).

  207. Interfacial profiles between coexisting phases in thin films: Cahn Hilliard treatment versus capillary waves
    K. Binder, M. Müller, F. Schmid, A. Werner, J. Stat. Phys. 95, 1045 (1999).
    doi:10.1023/A:1004510702716

  208. Monte Carlo simulations of copolymers at homopolymer interfaces: Interfacial structure as a function of the copolymer density
    A. Werner, F. Schmid, M. Müller, J. Chem. Phys. 110, 5370 (1999).
    doi:10.1063/1.478432

  209. Intrinsic profiles and capillary waves at homopolymer interfaces: A Monte Carlo study
    A. Werner, F. Schmid, M. Müller, K. Binder, Phys. Rev. E 59, 728 (1999).
    doi:10.1103/PhysRevE.59.728

  210. Effect of long range forces on the interfacial profiles in thin binary polymer films
    A. Werner, M. Müller, F. Schmid, K. Binder, J. Chem. Phys. 110, 1221 (1999).
    doi:10.1063/1.478164

  211. Self-consistent field theories for complex fluids
    F. Schmid, Topical review, Journ. of Physics: Cond. Matt. 10, 8105 (1998).
    doi:10.1088/0953-8984/10/37/002

  212. Interfaces in immiscible polymer blends: A Monte Carlo simulation approach on the CRAY T3E.
    A. Werner, M.Müller, F.Schmid, K.Binder, in High Performance Computing in Science and Engineering, 176, E.Kramer and W. Jäger (Eds), Springer Verlag (1998).
    doi:10.1007/978-3-642-58600-2_19

  213. Monte Carlo simulations of interfaces in polymer blends
    M. Müller, F. Schmid, Annual Reviews in Computational Physics VI, pp. 59-127, D. Stauffer edt., World Scientific, Singapore (1999).
    doi:10.1142/9789812815569_0003

  214. Liquid-vapour phase behaviour of a symmetrical binary fluid mixture
    N.B. Wilding, F. Schmid, P. Nielaba, Phys. Rev. E 58, 2201 (1998).
    doi:10.1103/PhysRevE.58.2201

  215. Simulation of interfaces between coexisting phases in materials
    K. Binder, M. Müller, F. Schmid, A. Werner, Journal of Computer aided Materials Design 4, 137 (1998).
    doi:10.1023/A:1008631902826

  216. Theoretical modeling of Langmuir monolayers
    F. Schmid, C. Stadler, H. Lange, Colloids and Surfaces A 149, 301 (1999).
    doi:10.1016/S0927-7757(98)00315-X

  217. Interfaces between coexisting phases in polymer mixtures: What can we learn from Monte Carlo Simulations?
    K. Binder, M. Müller, F. Schmid and A. Werner, Macromolecular Symposia 139, 1, (1999).
    doi:10.1002/masy.19991390102

  218. Interfaces in partly compatible polymer mixtures: A Monte Carlo simulation approach
    K. Binder, M. Müller, F. Schmid, and A. Werner, Physica A 249, 293 (1998).
    doi:10.1016/S0378-4371(97)00477-9

  219. Was kann die Computersimulation für die Materialwissenschaft leisten?
    K. Binder, W. Kob, M. Müller, P. Nielaba, W. Paul, F. Schmid, in ``Forschungsmagazin der Johannes-Gutenberg Universität Mainz'' 13, 6 (1997).

  220. Anomalous size-dependence of interfacial profiles between coexisting phases of polymer mixtures in thin film geometry: A Monte-Carlo simulation
    A. Werner, F. Schmid, M. Müller, and K. Binder, J. Chem. Phys. 107, 8175 (1997).
    doi:10.1063/1.475118

  221. Monte Carlo simulation of Langmuir monolayer models
    F. Schmid, C. Stadler, H. Lange, Computer Simulations in Condensed Matter Physics X, p. 37, D. Landau, K.K. Mon, H.B. Schüttler eds., Springer, Heidelberg 1998.
    doi:10.1007/978-3-642-46851-3_4

  222. Influence of the head group size on the direction of tilt in Langmuir monolayers
    F. Schmid, H. Lange, J. Chem. Phys. 106, 3757 (1997).
    doi:10.1063/1.473426

  223. Stabilization of tilt order by chain flexibility in Langmuir monolayers
    F. Schmid, Phys. Rev. E. 55, 5774 (1997).
    doi:10.1103/PhysRevE.55.5774

  224. Simulation von Phasengrenzflächen in Polymermischungen
    F. Schmid, M. Müller, A. Werner, K. Binder, Freiberger Forschungshefte B 279, 201 (1996).

  225. Diblock copolymers at a homopolymer-homopolymer - interface: A Monte Carlo simulation
    A. Werner, F. Schmid, K. Binder, M. Müller, Macromolecules 29, 8241 (1996).
    doi:10.1021/ma960614h

  226. Grafted rods: A tilting phase transition
    F. Schmid, D. Johannsmann, A. Halperin, J. Physique II 6, 1331 (1996).
    doi:10.1051/jp2:1996134

  227. A Self consistent field approach to surfaces of compressible polymer blends
    F. Schmid, J. Chem. Phys. 104, 9191 (1996).
    doi:10.1063/1.471610

  228. Surface ordering and surface segregation in binary alloys
    F. Schmid, in "Stability of Materials", 173, NATO-ASI Series (1996).
    doi:10.1007/978-1-4613-0385-5_7

  229. Errors in Monte Carlo simulations using shift register random number generators
    F. Schmid, N.B. Wilding, Intn. Journ. Mod. Phys C 6, 781 (1995).
    doi:10.1142/S0129183195000642

  230. Quantitative comparison of self consistent field theories for polymers near interfaces with Monte Carlo simulations
    F. Schmid, M. Müller, Macromolecules 28, 8639 (1995).
    doi:10.1021/ma00129a024

  231. Effect of fluctuations on the wetting transition in amphiphilic systems
    F. Schmid, M. Schick, J. Chem. Phys. 102, 7197 (1995).
    doi:10.1063/1.469114

  232. Effect of capillary wave fluctuations on wetting transitions in balanced amphiphilic systems
    F. Schmid, M. Schick, Zeitschr. f. Physik B 97, 189 (1995).
    doi:10.1007/BF01307469

  233. Liquid phases of Langmuir monolayers
    F. Schmid, M. Schick, J. Chem. Phys. 102, 2080 (1995).
    doi:10.1063/1.468729

  234. Spinodal phase separation in complex fluids
    F. Schmid, R. Blossey, J. Physique II (France) 4, 1195 (1994).
    doi:10.1051/jp2:1994194

  235. Monte Carlo study of interfacial properties in an amphiphilic system
    F. Schmid, M. Schick, Phys. Rev. E 49, 494 (1994).
    doi:10.1103/PhysRevE.49.494

  236. Phase transitions of a confined complex fluid
    F. Schmid, M. Schick, Phys. Rev. E 48, 1882 (1993).
    doi:10.1103/PhysRevE.48.1882

  237. Surface order in body-centered cubic alloys
    F. Schmid, Zeitschr. f. Phys. B 91, 77 (1993).
    doi:10.1007/BF01316711

  238. Monte Carlo Simulations of body centered cubic alloys
    F. Schmid, K. Binder, in "Metallic Alloys: Theoretical and Experimental Perspectives", 261, NATO-ASI Series, (1993).
    doi:10.1007/978-94-011-1092-1_29

  239. Monte Carlo investigation of interface roughening in a bcc-based binary alloy
    F. Schmid, K. Binder, Phys. Rev. B 46, 13565 (1992).
    doi:10.1103/PhysRevB.46.13565

  240. Rough interfaces in a bcc-based binary alloy
    F. Schmid, K. Binder, Phys. Rev. B 46, 13553 (1992).
    doi:10.1103/PhysRevB.46.13553

  241. Modelling order-disorder and magnetic transitions in iron-aluminium alloys
    F. Schmid, K. Binder, J. Phys.: Cond. Matter 4, 3569 (1992).
    doi:10.1088/0953-8984/4/13/019

  242. Lattice-distortion-mediated local jumps of hydrogen in niobium from diffuse neutron scattering
    H. Dosch, F. Schmid, P. Wiethoff, J. Peisl, Phys. Rev. B 46, 55 (1992).
    doi:10.1103/PhysRevB.46.55

Posted on

Friederike Schmid: Research

 

Lipid Membranes

All living things depend on membranes. Their basic structure is provided by lipid bilayers, which self-assemble spontaneously in water due to the amphiphilic character of lipid molecules - they contain both hydrophilic and hydrophobic units. In our group, we are interested in generic properties of such amphiphilic bilayers.

We have established a coarse-grained lipid model, which reproduces the main phases and phase transitions of phospholipid membranes at temperatures close to room temperature. As particular highlights, we have (i) recovered and investigated the mysterious modulated "ripple phase" in one-component membranes, which had intrigued researchers for many decades, and (ii) discovered and investigated nanoscale structures, examples of so-called "lipid rafts", in multicomponent membranes. Rafts are small domains in biomembranes which are believed to play a role for many cellular functions (see review article). We found that ripple states and nanoscale rafts are stabilized by very similar mechanisms: A propensity for global phase separation, which is suppressed by elastic interactions in the membrane. This is analyzed by computer simulations and elastic theories.

The same approach is used to study lipid-mediated interaction mechanisms membrane proteins. In the past, we have focused on a comparison between analytical predictions and simulation data for "proteins" that can be represented by stiff inclusions (see Figure). Currently, we investigate flexible amyloid-like peptides and their interaction with membranes. For more information, please contact Friederike Schmid.

Hybrid Field-based Simulation Methods for Polymers

The so-called 'self-consistent field' (SCF) theory is one of the most successful density functional theories fo inhomogeneous polymer systems, which allows to calculate the local structure of dense blends at an almost quantitative level (see review article).

We develop new hybrid simulation schemes for such systems that combine particle- and field-based representations of polymers, thus allowing to treat large parts of a system at the field level and zoom into certain areas in space with adaptive resolutions. Furthermore, we develop methods to combine different kinetic descriptions of polymeric fluids (diffusive Langevin and hydrodynamic Lattice-Boltzmann fields) in a consistent way. For more information, please contact
Friederike Schmid .

Self-Assembling Block Copolymers and Polymer Brushes

Melts of one or more kinds of polymers exhibit a wealth of diverse phases whose geometric properties make them interesting systems not only for condensed matter research, but for industrial applications, as well. Specifically, block copolymers made of chemically incompatible monomers (say, A and B) exhibit microphase separation, thus forming regular nanoscale patterns of varying complexity. In solvent, they self-assemble to nanoparticles or vesicles which can be used, e.g., as nanocontainers.

Among other, we study the influence of curvature on structure formation and pattern orientation in thin films and membranes, and we are interested in the effect of crosslinking for the stabilization of ordered structures. Furthermore, we use dynamic self-consistent field theory to study the kinetics of structure formation, e.g., in solutions containing amphiphilic block copolymers.

Another important application for polymers is to attach them to surfaces, thus modifying the surface properties. We are interested in the effect of polydispersity on the structure of such ''polymer brushes'', and on strategies to design smart surfaces that can be used as sensors and switches. For more information, please contact Friederike Schmid .

Memory Effects in Colloidal Systems

In soft matter, the separation of time scales is often incomplete and memory effects become important. We develop coarse-graining strategies for such situations, using the example of colloidal dispersions. We develop methods to reconstruct memory kernels in simple and complex fluids (e.g., electrolyte fluids). Our goal is to construct implicit solvent models that include memory effects and can be used for equilibrium and non-equilibrium simulations. In this context, we also develop algorithms for the efficient simulation of coupled generalized Langevin equations. For more information, please contact Friederike Schmid .

Interplay of Electrostatic and Hydrodynamic Interactions in Complex Fluids


The structure and dynamics of nano-objects (polymers, colloids) in solution is to a large extent governed by their interaction with the solvent. We aim at developing efficient methods for simulating nano-objects (polymers, colloids) that are dispersed in complex fluids, at equilibrium and nonequilibrium.

In particular, we are interested in studying electrolyte solvents, where the interplay of electrostatic interactions and hydrodynamic flows gives rise to a wealth of intriguing phenomena on a wide range of time and length scales. Physical problems of interest are the electrophoresis of charged polyelectrolytes or colloids in microchannels with different geometries and wall structurings, or the dielectrophoresis of polyelectrolytes or colloids in alternating electric fields. For more information, please contact Friederike Schmid .

Transport and Properties of Blood Proteins

Transport of nutrients to peripheral tissues and healing of damaged blood vessels are among the most important functions of blood. These functions involve the action of a series of proteins some of which are found in large amounts in the blood circulation. Fibrinogen is a multiprotein complex which, when activated, aggregate to form fibrin, a net-shaped molecular formation which is fundamental for the coagulation of blood following, i.e, a wound or when an extraneous body comes into contact with blood (i.e., graft implants). Thus, adsorption of fibrinogen on material surfaces play an important role in viability of those materials for implants.

In collaboration with experimental groups in the field, we use atomistic molecular dynamics simulations to characterize the adsorption process of fibrinogen on material surfaces. Another important molecule in the blood is albumin, which mediate transport of lipids and other molecules in blood. Albumin is a multidomain protein which provides several binding sites used to bind a range of different target molecules. Target molecules (lipids, drugs, etc.) bind to albumin which act as a transporter, and are then released where needed by blood circulation. Here we use molecular dynamics simulations to study the binding modes of several lipids to Albumin and the kinetics of lipid release/uptake. If you are interested, please contact Friederike Schmid or Giovanni Settanni.

Statistical Physics of Molecular Recognition


Selective interactions between biomolecules play an essential role in biological systems. Without selective recognition of antigens by corresponding antibodies, for example, the immune system could not work efficiently. One of the most salient features of molecular recognition is the fact that biomolecules often discriminate very accurately between many different but structurally similar interaction partners which are also present in a heterogeneous biological system.

Our studies aim at an understanding of the basic and universal mechanisms of recognition processes between biomolecules in an heterogeneous environment. In order to identify and investigate these basics mechanisms we develop idealised coarse-grained models. These models neglect those details which are particular for a specific system and are thus constructed to represent generic types of recognition processes. The thermostatic and dynamical properties of the models are then analysed with numerical and analytical methods from statistical physics. For more information, please contact  Friederike Schmid .

Posted on

Friederike Schmid: Teaching


Winter term 2024/2025

Current Teaching Activities

  • Advanced Statistical Physics
        (Monday 12-14, Lorentz room, Tuesday 10-12, Minkowsky)

Lecture Notes (mostly German)


Links to previous activities (selected)

Master Seminar: Biological Physics in SS 2018

Posted on