Friederike Schmid: Publications

  1. A general model for frictional contacts in colloidal systems
    K. Hofmann, K.-R. Dormann, B. Liebchen, F. Schmid, submitted (2025).

  2. A kinetic model to simulate charge flow through an electrochemical half cell
    D. Veloza-Diaz, F. Schmid, R. Cortes-Huerto, P. Ballone, N. C. Forero-Martinez, submitted (2025).

  3. Transient interactions between cationic ionizable lipids and anionic lipids foster lamellar to hexagonal phase transition
    D.N. Zimmer, F. Schmid, G. Settanni, submitted (2025).

  4. Assembly of polyplexes for RNA delivery
    J. Lehnen, J. Moreno Herrero, H. Haas, F. Schmid, G. Settanni, submitted (2025).

  5. From heteropolymer stiffness distributions to effective homopolymers. Part 2: Conformational analysis of intrinsically disordered proteins
    Y. Witzky, F. Schmid, A. Nikoubashman, submitted (2025).

  6. From heteropolymer stiffness distributions to effective homopolymers. Part 1: Theoretical modeling and computational verification
    Y. Witzky, F. Schmid, A. Nikoubashman, J. Chem. Phys., accepted (2025).

  7. Assessing the helical stability of polyXYs at the boundaries of intrinsically disordered regions with MD simulations
    M. Gonçalves-Kulik, L. A. Baptista, F. Schmid, M. A. Andrade-Navarro, Computational and Structural Biotechnology Reports 2, 100054 (2025).
    doi: 10.1016/j.csbr.2025.100054

  8. Micelle forming Linear-Dendritic block copolymers: A theoretical comparison between random hyperbranched and precise dendrimer polymer architectures
    M. Giannakou, O. Borisov, F. Schmid, Macromolecules 11, 5872 (2025).
    doi: 10.1021/acs.macromol.5c00615

  9. Sol-gel transition in heteroassociative RNA-protein solutions: A quantitative comparison of coarse-grained simulations and the Semenov-Rubinstein theory
    X. Chen, J. A. Vishnu, P. Besenius, J. König, F. Schmid, Macromolecules 58, 3331 (2025).
    doi: 10.1021/acs.macromol.4c03065

  10. Relaxation dynamics of entangled linear polymer melts via molecular dynamics simulations
    A. F. Behbahani, F. Schmid, Macromolecules 58, 767 (2025).
    doi: 10.1021/acs.macromol.4c02168

  11. Ionizable cationic lipids and helper lipids synergistically contribute to RNA packing and protection in lipid-based nanomaterials
    D. N. Zimmer, F. Schmid, G. Settanni, J. Phys. Chem. B 128, 10165 (2024).
    doi: 10.1021/acs.jpcb.4c05057

  12. Phase separation dynamics in wetting ridges of polymer surfaces swollen with oils of different viscosities
    Z. Cai, R. Badr, L. Hauer, K. Chaudhuri, A. Skabeev, F. Schmid, J. Pham, Soft Matter 20, 7300 (2024).
    doi: 10.1039/D4SM00576G

  13. Strong stretching theory of polydisperse curved brushes
    M. Giannakou, O. Borisov, F. Schmid, J. Chem. Phys. 161, 014903 (2024).
    doi: 10.1063/5.0213524

  14. Conditions for the co-existence of promoter and gene-body condensates
    A. Changiarath, J. J. Michels, R. Herrera Rodriguez, S. M. Hanson, F. Schmid, J. Padeken, L. S. Stelzl, preprint (2024).
    doi: 10.1101/2024.03.16.585180

  15. An efficient and accurate SCF algorithm for block copolymer films and brushes using adaptive discretization
    Le Qiao, M. Giannakou, F. Schmid, Polymers 26, 1228 (2024).
    doi: 10.3390/polym16091228

  16. Atomistic molecular dynamics simulations of ABA-type polymer peptide conjugates: Insights into supramolecular structures and their circular dichroism spectra
    M. L. Obenauer, J. A. Dresel, M. Schweitzer, P. Besenius, F. Schmid, Macromol. Rapid Comm. 45, 2400149 (2024).
    doi: 10.1002/marc.202400149

  17. Scalable approach to molecular motor-polymer conjugates for light-driven artificial muscles
    X. Yao, J. A. Vishnu, C. Lupfer, D. Hoenders, O. Skarsetz, W. Chen, D. Dattler, A. Perrot, W-Z. Wang, C. Gao, N. Giuseppone, F. Schmid, A. Walther, Advanced Materials 36, 2403514 (2024).
    doi: 10.1002/adma.202403514

  18. Stability and elasticity of ultrathin sphere-patterned block copolymer films
    L. Qiao, D. Vega, F. Schmid, Macromolecules 57, 4629-4634 (2024).
    doi: 10.1021/acs.macromol.4c00460

  19. Structure and dynamic evolution of interfaces between polymer solutions and gels and polymer interdiffusion: A Molecular dynamics study
    J. A. Vishnu, T. Linder, S. Seiffert, F. Schmid, Macromolecules, 57, 5545 (2024).
    doi: 10.1021/acs.macromol.4c00459

  20. Dynamics of droplets moving on lubricated polymer brushes
    R. Badr, L. Hauer, D. Vollmer, F. Schmid, Langmuir 40, 12368 (2024).
    doi: 10.1021/acs.langmuir.4c00400

  21. How boundary interactions dominate emergent driving of passive probes in active matter
    J. Shea, G. Jung, F. Schmid, Journal of Physics A 57, 235006 (2024).
    doi: 10.1088/1751-8121/ad4ad7

  22. A comprehensive approach to characterize navigation instruments for magnetic guidance in biological systems
    P. Blümler, F. Raudzus, F. Schmid, Scientific Reports 14, 7879 (2024).
    doi: 10.1038/s41598-024-58091-x

  23. Project RACCOON: Automated construction of PDB files for polymers and polymer peptide conjugates
    M. L. Obenauer, K. N. Spauszus, P. Besenius, F. Schmid, J. Open Source Software 9, 6293 (2024).
    doi: 10.21105/joss.06293

  24. Force renormalization for probes immersed in an active bath
    J. Shea, G. Jung, F. Schmid, Soft Matter 20, 1767 (2024).
    doi: 10.1039/D3SM01387A

  25. The effect of electric fields on the structure of water/acetonitrile mixtures
    A. I. Sourpis, N. C. Forero-Martinez, F. Schmid, J. Electrochem. Soc. 170, 083508 (2023).
    doi: 10.1149/1945-7111/acef61

  26. Viscosity of flexible and semiflexible ring melts - molecular origins and flow-induced segregation
    R. Datta, F. Berressem, F. Schmid, A. Nikoubashman, P. Virnau, Macromolecules 56, 7247 (2023).
    doi: 10.1021/acs.macromol.3c01046

  27. One step closer to the understanding of the relationship IDR-LCR-Structure
    M. Gonçalves-Kulik, F. Schmid, M. A. Andrade-Navarro, Genes 14, 1711 (2023).
    doi: 10.3390/genes14091711

  28. Stability of Branched Tubular Membrane Structures
    M. Jung, G. Jung, F. Schmid, Phys. Rev. Lett. 130, 148401 (2023).
    doi: 10.1103/PhysRevLett.130.148401

  29. Understanding and Modeling Polymers: The Challenge of Multiple Scales
    F. Schmid, ACS Polymers Au 3, 28 (2023). (Invited Perspective)
    doi: 10.1021/acspolymersau.2c00049

  30. Compression and interpenetration of adsorption-active brushes
    A.S. Ivanova, A.A. Polotsky, A.M. Skvortsov, L.I. Klushin, F. Schmid, J. Chem. Phys. 158, 024902 (2023).
    doi: 10.1063/5.0130347

  31. Virtual Issue on Polymers: Recent Advances from a Physical Chemistry Perspective (Editorial)
    F. Schmid, J. Phys. Chem. B. 126, 42, 8359 (2022).
    doi: 10.1021/acs.jpcb.2c06378

  32. Cloaking transition of droplets on lubricated brushes
    R. Badr, L. Hauer, D. Vollmer, F. Schmid, J. Phys. Chem. B, 126,36, 7047 (2022).
    doi: 10.1021/acs.jpcb.2c04640

  33. Passive probe particle in an active bath: Can we tell it is out of equilibrium?
    J. Shea, G. Jung, F. Schmid, Soft Matter, 18, 6965 (2022).
    doi: 10.1039/D2SM00905F

  34. Low complexity induces structure in protein regions predicted as intrinsically disordered
    M. Gonçalves-Kulik, P. Mier, K. Kastano, J. Cortés, P. Bernadó, F. Schmid, M. A. Andrade-Navarro, Biomolecules 12, 1098 (2022).
    doi: 10.3390/biom12081098

  35. Editorial: Multiscale simulation methods for soft matter systems
    F. Schmid, J. Phys.: Cond. Matter 34, 160401 (2022).
    doi: 10.1088/1361-648X/ac5071

  36. Adsorption-active polydisperse brush with tunable molecular mass distribution
    A.S. Ivanova, A.A. Polotsky, A.M. Skvortsov, L.I. Klushin, F. Schmid, J. Chem. Phys. 156, 044902 (2022).
    doi: 10.1063/5.0076382

  37. pH-dependent behavior of ionizable cationic lipids in mRNA-carrying lipoplexes investigated by molecular dynamics simulations
    G. Settanni, W. Brill, H. Haas, F. Schmid, Macromolecular Rapid Communications 43, 2100683 (2022).
    doi:10.1002/marc.202100683
    Highlighted in Advanced Science News

  38. Fluctuation-Dissipation Relations far from equilibrium: A case study
    G. Jung, F. Schmid, Soft Matter 17, 6413 (2021).
    doi:10.1039/D1SM00521A

  39. Introducing memory in coarse-grained simulations
    V. Klippenstein, M. Tripathy, G. Jung, F. Schmid, N. van der Vegt, J. Phys. Chem. B, 125, 4931 (2021).
    doi:10.1021/acs.jpcb.1c01120

  40. Shear-thinning in oligomer melts: Molecular origins and Applications
    R. Datta, L. Yelash, F. Schmid, F. Kummer, M. Oberlack, M. Lukacova-Medvidova, P. Virnau, Polymers 13, 2806 (2021).
    doi:10.3390/polym13162806

  41. Dynamic coarse-graining of polymer systems using mobility functions
    B. Li, K. Daoulas, F. Schmid, J. Phys.: Cond. Matter 33, 194004 (2021).
    doi:10.1088/1361-648X/abed1b

  42. Model reduction techniques for the computation of extended Markov parameterizations for generalized Langevin equations
    N. Bockius, J. Shea, G. Jung, F. Schmid, M. Hanke, J. Phys.: Cond. Matter 33, 214003 (2021).
    doi:10.1088/1361-648X/abe6df

  43. Adsorption-active diblock copolymers as universal agents for unusual barrier-free transitions in stimuli-responsive brushes
    S. Qi, L.I. Klushin, A.M. Skvortsov, F. Schmid, Macromolecules 54, 2592 (2021).
    doi:10.1021/acs.macromol.0c02095

  44. Polymer brushes with reversibly tunable grafting density
    L.I. Klushin, A.M. Skvortsov, A.A. Polotsky, A.S. Ivanova, F. Schmid, J. Chem. Phys. 154, 074904 (2021).
    doi:10.1063/5.0038202

  45. Optimizing the nickel boride layer thickness in a spectroelectrochemical ATR-FTIR thin-film flow cell applied in glycerol oxidation
    S. Cychy, S. Lechler, Z. Huang, M. Braun, A.-C. Brix, P. Blümler, C. Andronescu, F. Schmid, W. Schuhmann, M. Muhler Chinese Journal of Catalysis 42, 2206 (2021).
    doi:10.1016/S1872-2067(20)63766-4

  46. Defects and defect engineering in soft matter
    A. Jangizehi, F. Schmid, P. Besenius, K. Kremer, S. Seiffert, Soft Matter 16, 10809-10859 (2020).
    doi:10.1039/d0sm01371d

  47. Dynamic self-consistent field approach for studying kinetic processes in multiblock copolymer melts
    F. Schmid, B. Li, Polymers 12, 2205 (2020).
    [Link] doi:10.3390/polym12102205

  48. Editorial: Characteristics of Impactful Computational Contributions to The Journal of Physical Chemistry B
    P. Jungwirth, E. J. Maginn, B. Roux, F. Schmid, J.-E. Shea, J. Phys. Chem. B 124, 5093 (2020).
    doi:10.1021/acs.jpcb.0c04149

  49. Using copolymers to design tunable stimuli-reponsive brushes
    S. Qi, L.I. Klushin, A.M. Skvortsov, F. Schmid, Macromolecules 53, 13 (2020).
    doi:10.1021/acs.macromol.0c00674

  50. Bottom-up construction of dynamic density functional theories for inhomogeneous polymer systems from microscopic simulations
    S. Mantha, S. Qi, F. Schmid, Macromolecules 53, 3409 (2020).
    doi:10.1021/acs.macromol.0c00130
    Featured in Advances in Engineering

  51. Trans-Cyclooctene-Functionalized PeptoBrushes with Improved Reaction Kinetics of the Tetrazine Ligation for Pretargeted Nuclear Imaging
    E. J. Steen, J. T. Jorgensen, K. Johann, K. Norregaard, B. Sohr, D. Svatunek, A. Birke, V. Shalgunov, P. E. Edem, R. Rossin, C. Seidl, F. Schmid, M. S. Robillard, J. L. Kristensen, H. Mikula, M. Barz, A. Kjaer, M. M. Herth, ACS Nano 14, 568 (2020).
    doi:10.1021/acsnano.9b06905

  52. Quorum-sensing active particles with discontinuous motility
    A. Fischer, F. Schmid, T. Speck, Phys. Rev. E 101, 012601 (2020).
    doi:10.1103/PhysRevE.101.012601

    Erratum: Quorum-sensing active particles with discontinuous motility
    A. Fischer, F. Schmid, T. Speck, Phys. Rev. E 102, 059903 (2020).
    doi:10.1103/PhysRevE.102.059903

  53. Shear modulus of an irreversible diblock copolymer network from self-consistent field theory
    S. Qi, J. Zhou, F. Schmid, Macromolecules 52, 9569 (2019).
    doi:10.1021/acs.macromol.9b09851

  54. Order-order phase transitions induced by supercritical carbon dioxide in triblock copolymer thin films
    A. Abate, G. Vu, C. Piqueras, M.C. del Barrio, L. Gomez, G. Catalini, F. Schmid, D. Vega, Macromolecules 52, 7786 (2019).
    doi:10.1021/acs.macromol.9b01278

  55. Anomalous Slowdown of Polymer Detachment Dynamics on Carbon Nanotubes
    D.A. Vega, A. Milchev, F. Schmid, M. Febbo, Phys. Rev. Lett. 122, 218003 (2019).
    doi:10.1103/PhysRevLett.122.218003

  56. The molecular Lego movie
    A. Nikoubashman, F. Schmid, Nature Chemistry 11, 298 (2019).
    doi:10.1038/s41557-019-0243-8
    Invited News and Views article.

  57. Frequency-dependent dielectric polarizability of flexible polyelectrolytes in electrolyte solution: A Dissipative Particle Dynamics simulation
    G. Jung, S. Kasper, F. Schmid, J. Electrochem. Soc. 166, B3194-B3202 (2019).
    doi:10.1149/2.0231909jes

  58. Polydispersity effects on interpenetration in compressed brushes
    L.I. Klushin, A.M. Skvortsov, S. Qi, T. Kreer, F. Schmid, Macromolecules 52, 1810 (2019).
    doi:10.1021/acs.macromol.8b02361

  59. Structure of lateral heterogeneities in a coarse-grained model for multicomponent membranes
    S. Meinhardt, F. Schmid, Soft Matter 15, 1942 (2019).
    doi:10.1039/c8sm02261e
    Featured on the cover of the journal.

  60. How ill-defined constituents produce well-defined nanoparticles: Effect of polymer dispersity on the uniformity of copolymeric micelles
    S. Mantha, S. Qi, M. Barz, F. Schmid, Phys. Rev. Materials 3, 026002 (2019).
    doi:10.1103/PhysRevMaterials.3.026002
    Highlighted as Editor's Suggestion.

  61. Structure and dynamics of B2O3 melts and glasses: From ab initio to classical molecular dynamics simulations
    C. Scherer, F. Schmid, M. Letz, J. Horbach, Computational Materials Science 159, 73-85 (2019).
    doi:10.1016/j.commatsci.2018.12.001

  62. Theoretical approaches to amphiphilic polymer conetworks
    F. Schmid, Chapter 11 in Amphiphilic polymer co-networks: Synthesis, properties, modelling and application , pp. 239-261, Edt. Costas Patrickios, RSC publishing (2019).
    doi:10.1039/9781788015769-00239

  63. Generalized Brownian dynamics: Construction and numerical integration of non-Markovian particle-based models
    G. Jung, M. Hanke, F. Schmid, Soft Matter 14, 9368 (2018).
    doi:10.1039/C8SM01817K

  64. Polysarcosine and poly(ethylene-glycol) interactions with proteins investigated using molecular dynamics simulations
    G. Settanni, T. Schäfer, C. Muhl, M. Barz, F. Schmid, Computational and Structural Biotechnology Journal 16, 543 (2018).
    doi:10.1016/j.csbj.2018.10.012

  65. Polydisperse brush with the linear density profile
    L.I. Klushin, A.M. Skvortsov, S. Qi, F. Schmid, Polymer Science, Series C 60, Suppl. 2, pp. S84-S94 (2018).
    doi:10.1134/S1811238218020121

  66. Curvature as a guiding field for patterns in thin block copolymer films
    G.T. Vu, A.A. Abate, L.R. Gomez, A.D. Pezzutti, R.A. Register, D.A. Vega, F. Schmid, Phys. Rev. Lett. 121, 087801 (2018).
    doi:10.1103/PhysRevLett.121.087801
    Featured in Physics

  67. Tuning transition properties of stimuli-responsive brushes by polydispersity
    S. Qi, L.I. Klushin, A.M. Skvortsov, M. Liu, J. Zhou, F. Schmid, Adv. Func. Mater. 28, 1800745 (2018).
    doi:10.1002/adfm.201800745

  68. Critical behavior of active Brownian particles
    J.T. Siebert, F. Dittrich, F. Schmid, K. Binder, T. Speck, P. Virnau, Phys. Rev. E 98, 03061(R) (2018).
    doi:10.1103/PhysRevE.98.030601

  69. Phase transitions in single macromolecules: Loop-stretch transition versus loop-adsorption transition in end-grafted polymer chains
    S. Zhang, S. Qi, L.I. Klushin, A.M. Skvortsov, D. Yan, F. Schmid, J. Chem. Phys. 148, 044903 (2018).
    doi:10.1063/1.5013346

  70. Hybrid particle-continuum simulations coupling Brownian dynamics and local dynamic density functional theory
    S. Qi, F. Schmid, Soft Matter 13, 7938 (2017).
    doi:10.1039/C7SM01749A

  71. Frequency-dependent hydrodynamic interactions between two solid spheres
    G. Jung, F. Schmid, Physics of Fluids 29, 126101 (2017).
    doi:10.1063/1.5001565

  72. Potassium triggers a reversible specific stiffness transition of polyethylene glycol
    L. Tüting, W. Ye, G. Settanni, F. Schmid, B. Wolf, R. Ahijado-Guzman, C. Sönnichsen, J. Phys. Chem. C 121, 22396 (2017).
    doi:10.1021/acs.jpcc.7b08987

  73. Dynamic density functional theories for inhomogeneous polymer systems compared to Brownian dynamics simulations
    S. Qi, F. Schmid, Macromolecules 50, 9831 (2017).
    doi:10.1021/acs.macromol.7b02017

  74. Anomalous critical slowdown at a first order phase transition in single polymer chains
    S. Zhang, S. Qi, L.I. Klushin, A.M. Skvortsov, D. Yan, F. Schmid, J. Chem. Phys. 147, 064902 (2017).
    doi:10.1063/1.4997435

  75. Simulating Copolymeric nanoparticle assembly in the co-solvent method: How mixing rates control final particle sizes and morphologies
    S. Keßler, K. Drese, F. Schmid, Polymer 126C, 9-18 (2017).
    doi:10.1016/j.polymer.2017.07.057

  76. Iterative reconstruction of memory kernels
    G. Jung, M. Hanke, F. Schmid, J. Chemical Theory and Computation 13, 2481 (2017).
    doi:10.1021/acs.jctc.7b00274

  77. Interactions between proteins and poly(ethylene-glycol) investigated using Molecular Dynamics simulations
    G. Settanni, J. Zhou, F. Schmid, J. Phys.: Conf. Ser. 921, 012002 (2017).
    doi:10.1088/1742-6596/921/1/012002

  78. Self-assembly of polymeric particles in Poiseuille flow: A hybrid Lattice Boltzmann / External Potential Dynamics simulation study
    J. Heuser, G. J. A. Sevink, F. Schmid, Macromolecules 50, 4474 (2017).
    doi:10.1021/acs.macromol.6b2684

  79. The influence of block ionomer microstructure on polyplex properties: Can simulations help to understand differences in transfection efficiency?
    P. Heller, B. Weber, J. Zhou, D. Hobernik, M. Bros, F. Schmid, M. Barz, Small 13, 1603694 (2017).
    doi:10.1002/smll.201603694

  80. Physical mechanisms of micro- and nanodomain formation in multicomponent lipid membranes
    F. Schmid, Biochimica et Biophysica Acta 1859, 509 (2017).
    doi:10.1016/j.bbamem.2016.10.021

  81. Combining cell-based hydrodynamics with hybrid particle-field simulations: Efficient and realistic simulation of structuring dynamics
    G. J. A. Sevink, F. Schmid, T. Kawakatsu, G. Milano, Soft Matter 13, 1594 (2017).
    doi:10.1039/C6SM02252A

  82. Protein corona composition of PEGylated nanoparticles correlates strongly with amino acid composition of protein surface
    G. Settanni, J. Zhou, T. Suo, S. Schöttler, K. Landfester, F. Schmid, V. Mailänder, Nanoscale 9, 2138 (2017).
    doi:10.1039/C6NR07022A

  83. Negative thermal expansion of quartz glass at low temperatures: An ab initio simulation study
    C. Scherer, J. Horbach, F. Schmid, M. Letz, J. Non-crystalline Solids 468, 82 (2017).
    doi:10.1016/j.jnoncrysol.2017.04.035

  84. Polydisperse polymer brushes: Internal structure, critical behavior, and interaction with flow
    S. Qi, L.I. Klushin, A.M. Skvortsov, F. Schmid, Macromolecules 49, 9665 (2016).
    doi:10.1021/acs.macromol.6b02026

  85. Shear-aligned block copolymer monolayers as seeds to control the orientational order in cylinder-forming block copolymer thin films
    A. Abate, G. Vu, A. Pezzutti, N. Garcia, R. Davis, F. Schmid, R. Register, D. Vega, Macromolecules 49, 7588 (2016).
    doi:10.1021/acs.macromol.6b00816

  86. A hybrid particle-continuum resolution method and its application to a homopolymer solution
    S. Qi, H. Behringer, T. Raasch, F. Schmid, Eur. Phys. J. Spec. Top. 225, 1527 (2016).
    doi:10.1140/epjst/e2016-60096-8

  87. Computing bulk and shear viscosities from simulations of fluids with dissipative and stochastic interactions
    G. Jung, F. Schmid, J. Chem. Phys. 144, 204104 (2016).
    doi:10.1063/1.4950760

  88. Complex formation between polyelectrolytes and oppositely charged oligoelectrolytes
    J. Zhou, M. Barz, F. Schmid, J. Chem. Phys. 144, 164902 (2016).
    doi:10.1063/1.4947255

  89. Modeling size controlled nanoparticle precipitation with the co-solvency method by spinodal decomposition
    S. Keßler, F. Schmid, K. Drese, Soft Matter 12, 7231 (2016).
    doi:10.1039/C6SM01198E

  90. Collective behavior of quorum-sensing run-and-tumble particles in confinement
    M. Rein, N. Heinß, F. Schmid, T. Speck, Phys. Rev. Lett. 116, 058102 (2016).
    doi:10.1103/PhysRevLett.116.058102

  91. Molecular dynamics simulations of the initial adsorption stages of fibrinogen on mica and graphite surfaces
    S. Köhler, F. Schmid, G. Settanni, Langmuir 48, 13180 (2015).
    doi:10.1021/acs.langmuir.5b00371

  92. Statistical properties of linear-hyperbranched graft copolymers prepared via ''hypergrafting'' of ABm monomers from linear B-functional core chains: A Molecular Dynamics simulation
    H. Rabbel, H. Frey, and F. Schmid, J. Chem. Phys. 143, 243125 (2015).
    doi:10.1063/1.4935371

  93. Interplay of curvature-induced micro- and nanodomain structures in multicomponent lipid bilayers
    L. Brodbek, F. Schmid, Int J Adv Eng Sci Appl Math 8, 111 (2016).
    doi:10.1007/s12572-015-0152-z ; SharedIt link

  94. Computer simulations of single particles in external electric fields
    J. Zhou and F. Schmid, Soft Matter 11, 6728 (2015).
    doi:10.1039/C5SM01485A

  95. Stimuli-responsive brushes with active minority components: Monte Carlo study and analytical theory
    S. Qi, L.I. Klushin, A.M. Skvortsov, A.A. Polotsky, F. Schmid, Macromolecules 48, 3775 (2015).
    doi:10.1021/acs.macromol.5b00563

  96. The internal dynamics of fibrinogen and its implications for coagulation and adsorption
    S. Köhler, F. Schmid, G. Settanni, PLOS Comput. Biol. 11, e1004346 (2015).
    doi:10.1371/journal.pcbi.1004346

  97. Solvent determines nature of effective interactions between nanoparticles in polymer brushes
    Z. Lian, S. Qi, J. Zhou, F. Schmid, J. Phys. Chem. B 119, 4099 (2015).
    doi:10.1021/jp511911g

  98. Morphology control in biphasic hybrid systems of semiconducting materials
    F. Mathias, A. Fokina, K. Landfester, W. Tremel, F. Schmid, K. Char, R. Zentel, Macromolecular Rapid Communications 36, 959 (2015).
    doi:10.1002/marc.201400688

  99. An efficient dissipative particle dynamics-based algorithm for simulating electrolyte solutions
    S. Medina, J. Zhou, Z.-G. Wang, F. Schmid, J. Chem. Phys. 142, 024103 (2015).
    doi:10.1063/1.4905102

  100. Flows and mixing in channels with misaligned superhydrophobic walls
    T. V. Nizkaya, E. S. Asmolov, J. Zhou, F. Schmid, O. I. Vinogradova, Phys. Rev. E 91, 033020 (2015).
    doi:10.1103/PhysRevE.91.033020

  101. The structure of cholesterol in lipid rafts
    L. Toppozini, S. Meinhardt, C. L. Armstrong, Z. Yamani, N. Kuvcerka, F. Schmid, M. Rheinstädter, Phys. Rev. Lett. 113, 228101 (2014).
    doi:10.1103/PhysRevLett.113.228101

  102. Sharp and fast: Sensors and switches based on polymer brushes with adsorption-active minority chains
    L.I. Klushin, A.M. Skvortsov, A.A. Polotsky, S. Qi, F. Schmid, Phys. Rev. Lett. 113, 068303 (2014).
    See also APS focus story in Physics 7, 83 (2014).
    doi:10.1103/PhysRevLett.113.068303

  103. Strategy for good dispersion of well-defined tetrapods in semiconducting polymer materials
    J. Lim, L. zur Borg, S. Dolezel, F. Schmid, K. Char, R. Zentel, Macromolecular Rapid Communications 35, 1685 (2014).
    doi:10.1002/marc.201400314

  104. Computational studies of biomembrane systems: Theoretical considerations, computer simulation models, and applications
    M. Deserno, K. Kremer, H. Paulsen, C. Peter, F. Schmid, Advances in Polymer Science 260, 237 (2014).
    doi:10.1007/12_2013_258

  105. On ripples and rafts: Curvature induced nanoscale structures in lipid membranes
    F. Schmid, S. Dolezel, O. Lenz, S. Meinhardt, J. Physics: Conference Series 487, 012004 (2014).
    doi:10.1088/1742-6596/487/1/012004

  106. Computer simulation of flow past superhydrophobic striped surfaces
    J. Zhou, A. V. Belyaev, E. S. Asmolov, O. I. Vinogradova, F. Schmid, NIC Series 47, 407 (2014).

  107. The flexibility of fibrinogen and its initial adsorption stages at graphite and mica surfaces
    S. Köhler, F. Schmid, G. Settanni, NIC Series 47, 117 (2014).

  108. A Dissipative-Particle-Dynamics model for simulating dynamics of charged colloids
    J. Zhou, F. Schmid, in 'High performance computing in Science and Engineering' 13, W. E. Nagel et al eds., Springer (2014).

  109. Computer simulations of charged colloids in alternating electric fields
    J. Zhou, F. Schmid, Eur. Phys. J.: Special topics 222, 2911 (2013).
    doi:10.1140/epjst/e2013-02066-y

  110. Effective slippage on superhydrophobic trapezoidal grooves
    J. Zhou, E.S. Asmolov, F. Schmid, O.I. Vinogradova, J. Chem. Phys. 139, 174708 (2013).
    doi:10.1063/1.4827867

  111. Self-consistent field approach for crosslinked copolymer materials
    F. Schmid, Phys. Rev. Lett. 111, 028303 (2013).
    doi:10.1103/PhysRevLett.111.028303

  112. Elastic properties and line tension of self-assembled bilayer membranes
    J. Li, K.A. Pastor, A.-C. Shi, F. Schmid, J. Zhou, Phys. Rev. E 88, 012718 (2013).
    doi:10.1103/PhysRevE.88.012718

  113. Hyperbranched graft-copolymers by "Hypergrafting" of ABm monomers from polydisperse macroinitiator cores: Theory meets synthesis
    C. Schüll, H. Rabbel, F. Schmid, H. Frey, Macromolecules 46, 5823 (2013).
    doi:10.1002/ma401119r

  114. Dynamic and dielectric response of charged colloids in electrolyte solutions to external electric fields
    J. Zhou, R. Schmitz, B. Dünweg, F. Schmid, J. Chem. Phys. 139, 024901 (2013).
    doi:10.1063/1.4812692

  115. Using field theory to construct hybrid particle-continuum simulation schemes with adaptive resolution for soft matter systems
    S. Qi, H. Behringer, F. Schmid, New J. Physics 15, 125009 (2013).
    doi:10.1088/1367-2630/15/12/125009

  116. A hybrid particle-continuum model in soft-condensed matter simulations
    S. Qi, H. Behringer, F. Schmid, NIC Series 46, 193 (2013).

  117. Effective slip-length tensor for a flow over weakly stripping stripes
    E.S. Asmolov, J. Zhou, F. Schmid, O.I. Vinogradova, Phys. Rev. E 88, 023004 (2013).
    doi:10.1103/PhysRevE.88.023004

  118. Monolayer curvature stabilizes nanoscale raft domains in mixed lipid bilayers
    S. Meinhardt, R.L.C. Vink, F. Schmid, PNAS 110, 4476 (2013).
    doi:10.1073/pnas.1221075110

  119. AC-field induced polarization for uncharged colloids in salt solution: A Dissipative Particle Dynamics simulation
    J. Zhou, F. Schmid, Eur. Phys. J. E 36, 33 (2013).
    doi:10.1140/epje/i2013-13033-0

  120. A model for rod-coil block copolymers
    S. Dolezel, H. Behringer, F. Schmid, Polymer Science, Ser. C 55, 70 (2013).
    doi:10.1134/S1811238213060015

  121. Interactions of membranes with coarse-grain proteins: A comparison
    J. Neder, P. Nielaba, B. West, F. Schmid, New J. Physics 14, 125017 (2012).
    doi:10.1088/1367-2630/14/12/125017

  122. Exploiting seeding of random number generators for efficient domain decomposition parallelization of dissipative particle dynamics
    Y. Afshar, F. Schmid, A. Pishevar, S. Worley, Comp. Phys. Comm. 184, 1119 (2013).
    doi:10.1016/j.cpc.2012.12.003

  123. A new algorithm for simulating flows of conducting fluids in the presence of electric fields
    M. Joulaian, A. Pishevar, S. Khajepor, F. Schmid, Y. Afshar, Comp. Phys. Comm. 183, 2405 (2012).
    doi:10.1016/j.cpc.2012.06.008

  124. Fluctuations in lipid bilayers: Are they understood?
    F. Schmid, Biophys. Rev. and Lett. 8, 1 (2013).
    doi:10.1142/S1793048012300113

  125. Anisotropic flow in striped superhydrophobic channels
    J. Zhou, A. Belyaev, F. Schmid, O. Vinogradova, J. Chem. Phys. 136, 194706 (2012).
    doi:10.1063/1.4718834

  126. Dielectric response of nanoscopic spherical colloids in alternating electric fields: A dissipative particle dynamics simulation
    J. Zhou, F. Schmid, J. Phys.: Cond. Matter 24, 464112 (2012).
    doi:10.1088/0953-8984/24/46/464112

  127. Mesoscopic simulation methods for studying flow and transport in electric fields in micro- and nanochannels
    J. Smiatek, F. Schmid, Advances in Microfluidics , Chapter 5 (invited), pp. 97-126, InTech Open Access Publisher (2012).
    doi:10.5772/35773

  128. Separation of chiral particles in nanofluidic channels
    S. Meinhardt, J. Smiatek, R. Eichhorn, F. Schmid, Phys. Rev. Lett. 108, 214504 (2012).
    doi:10.1103/PhysRevLett.108.214504

  129. Reply to Comment on: ''Are stress-free membranes really 'tensionless'?''
    F. Schmid, EPL 97, 18002 (2012).
    doi:10.1209/0295-5075/97/18002

  130. Hybrid Lattice Boltzmann / Dynamic Self-Consistent Field simulations of microphase separation and vesicle formation in block copolymer systems,
    L. Zhang, G. J. A. Sevink, F. Schmid, Macromolecules 44, 9434 (2011).
    doi:10.1021/ma2018638

  131. Membrane-mediated protein-protein interaction: A Monte Carlo study
    J. Neder, P. Nielaba, B. West, F. Schmid, Current Nanoscience 7, 656 (2011).
    doi:10.2174/157341311797483655

  132. Are stress-free membranes really 'tensionless'?
    F. Schmid, EPL 95, 28008 (2011).
    doi:10.1209/0295-5075/95/28008

  133. Theory and simulation of multiphase polymer systems
    F. Schmid, chapter 3 in Handbook of Multiphase Polymer Systems , Eds. A. Boudenne, L. Ibos, Y. Candau, S. Thomas, pp. 31-80 (Wiley, 2011).
    doi:10.1002/9781119972020.CH3

  134. Analytical model for the long-distance tracer transport in plants
    J. Bühler, G. Huber, F. Schmid, P. Blümler, Journal of Theoretical Biology 270, 70 (2011).
    doi:10.1016/j.jtbi.2010.11.005

  135. Mesoscopic simulations of electroosmotic flow and electrophoresis in nanochannels
    J. Smiatek, F. Schmid, Computer Physics Communications 182, 1941 (2011).
    doi:10.1016/j.cpc.2010.11.021

  136. A method to compute absolute free energies or enthalpies of fluids
    F. Schmid, T. Schilling, Physics Procedia 4, 131 (2010).
    doi:10.1016/j.phpro.2010.08.017

  137. Polyelectrolyte electrophoresis in nanochannels: A Dissipative Particle Dynamics simulation
    J. Smiatek, F. Schmid, J. Phys. Chem. B 114, 6266 (2010).
    doi:10.1021/jp100128p

  138. Coarse-grained simulations of membranes under tension
    J. Neder, B. West, P. Nielaba, F. Schmid, J. Chem. Phys. 132, 115101 (2010).
    doi:10.1063/1.3352583

  139. Membrane-protein interactions in lipid bilayers: Molecular simulations versus elastic theory
    B. West, F. Schmid, IAS Series Vol. 3, 279 (2010).

  140. Fluctuations and elastic properties of lipid membranes in the fluid and gel state: A coarse-grained Monte Carlo study
    B. West, F. Schmid, Soft Matter 6, 1275 (2010).
    doi:10.1039/B920978F

  141. Computing absolute free energies of disordered structures by molecular simulations
    T. Schilling, F. Schmid, J. Chem. Phys. 131, 231102 (2009).
    doi:10.1063/1.3274951

  142. Random copolymer adsorption: Morita approximation compared to exact numerical calculations
    A.A. Polotsky, A. Degenhard, F. Schmid, J. Chem. Phys. 131, 04903 (2009).
    doi:10.1063/1.3193723

  143. Mesoscopic simulations of the counterion-induced electroosmotic flow in nanochannels - a comparative study
    J. Smiatek, M. Sega, C. Holm, U.D. Schiller, F. Schmid, J. Chem. Phys. 130, 244702 (2009).
    doi:10.1063/1.3152844

  144. Toy amphiphiles on the computer: What can we learn from generic models?
    F. Schmid, Macromolecular Rapid Communications 30, 741 (2009).
    doi:10.1002/marc.200800750

  145. Membrane-protein interactions in a generic coarse-grained model for lipid bilayers
    B. West, F.L.H. Brown, F. Schmid, Biophysical Journal 96, 101 (2009).
    doi:10.1529/biophysj.108.138677

  146. Influence of correlations on molecular recognition
    H. Behringer, F. Schmid, Phys. Rev. E 78, 031903 (2008).
    doi:10.1103/PhysRevE.78.031903

  147. Correlation effects in protein-protein recognition
    H. Behringer, F. Schmid, NIC-Series Vol. 40, 165-168 (2008).

  148. Spontaneous formation of complex micelles from homogeneous solution
    X. H. He, F. Schmid, Phys. Rev. Lett. 100, 137802 (2008).
    See also Physical Review Focus, Vol. 21, Story 12.
    doi:10.1103/PhysRevLett.100.137802

  149. Effective protein interactions in a coarse-grained model for lipid membranes
    B. West, F. Schmid, NIC-Series Vol. 39, 271-278 (2008).

  150. Kinetically driven helix formation during homopolymer collapse processes
    S. A. Sabeur, F. Hamdache, F. Schmid, Phys. Rev. E 77, 020802(R) (2008).
    doi:10.1103/PhysRevE.77.020802

  151. Tunable-slip boundaries for coarse-grained simulations of fluid flow
    J. Smiatek, M. P. Allen, F. Schmid, Eur. Phys. J. E 26, 115 (2008).
    doi:10.1140/epje/i2007-10311-4

  152. Coarse-grained lattice model for molecular recognition
    H. Behringer, A. Degenhard, F. Schmid, NIC-Series Vol. 36, 83-85 (2007).

  153. Coarse-grained lattice model for investigating the role of cooperativity in molecular recognition
    H. Behringer, A. Degenhard, F. Schmid, Physical Review E 76, 031914 (2007).
    doi:10.1103/PhysRevE.76.031914

  154. Fluctuating interfaces in liquid crystals
    F. Schmid, G. Germano, S. Wolfsheimer, T. Schilling, Macromolecular Symposia 252, 110 (2007).
    doi:10.1002/masy.200750611

  155. Using prenucleation to control complex copolymeric vesicle formation in solution
    X. H. He, F. Schmid, Macromolecules 39, 8908 (2006).
    doi:10.1021/ma0622478

  156. A generic model for lipid monolayers, bilayers, and membranes
    F. Schmid, D. Düchs, O. Lenz, B. West, Comp. Phys. Comm. 177, 168 (2007).
    doi:10.1016/j.cpc.2007.02.066

  157. Developing and analyzing idealized models for molecular recognition
    H. Behringer, T. Bogner, A.A. Polotsky, A. Degenhard, F. Schmid J. Biotechnology 129, 268 (2006).
    doi:10.1016/j.jbiotec.2007.01.035

  158. Structure of symmetric and asymmetric ripple phases in lipid bilayers
    O. Lenz, F. Schmid, Phys. Rev. Lett. 98, 058104 (2007).
    doi:10.1103/PhysRevLett.98.058104

  159. A thermostat for molecular dynamics of complex fluids
    M. P. Allen, F. Schmid, Mol. Simulations 33, 21 (2007).
    doi:10.1080/08927020601052856

  160. A coarse-grained lattice model for molecular recognition
    H. Behringer, A. Degenhard, F. Schmid, Phys. Rev. Lett. 97, 128101 (2006).
    doi:10.1103/PhysRevLett.97.128101

  161. Bistable anchoring of nematics on rough substrates
    F. Schmid, D. L. Cheung, Europhys. Lett. 76, 243 (2006).
    doi:10.1209/epl/i2006-10248-8

  162. Stabilization of membrane pores by packing
    D. Bicout, F. Schmid, E. Kats, Phys. Rev. E 73, 060101(R) (2006).
    doi:10.1103/PhysRevE.73.060101

  163. Dynamics of spontaneous vesicle formation in dilute solutions of amphiphilic diblock copolymers
    X. H. He, F. Schmid, Macromolecules 39, 2654 (2006).
    doi:10.1021/ma052536g

  164. Coarse-grained models of complex fluids at equilibrium and under shear
    F. Schmid, in Computer Simulations in Condensed Matter: from Materials to Chemical Biology , Vol. 2, pp. 211-258, Eds. K. Binder, G. Ciccotti, M. Ferrario (Springer, Berlin, 2006).
    doi:10.1007/3-540-35284-8_10

  165. Isotropic-nematic transition in liquid crystals confined between rough walls
    D. Cheung, F. Schmid, Chem. Phys. Lett. 418, 392 (2006).
    doi:10.1016/j.cplett.2005.11.010

  166. Approaching criticality in polymer/polymer systems
    C. Carelli, R. A. L. Jones, R. N. Young, R. Cubitt, R. Dalgliesh, F. Schmid, M. Sferrazza, Phys. Rev. E 72, 031807 (2005).
    doi:10.1103/PhysRevE.72.031807

  167. The effects of long-ranged and short-ranged forces in confined near-critical polymeric liquids
    C. Carelli, R. A. L. Jones, R. N. Young, R. Cubitt, R. Krastev, T. Gutberlet, R. Dalgliesh, F. Schmid, M. Sferrazza, Europhys. Lett. 71, 763 (2005).
    doi:10.1209/epl/i2005-10162-7

  168. Nematic-isotropic interfaces under shear: A Molecular Dynamics simulation
    G. Germano, F. Schmid, J. Chem. Phys. 123, 214703 (2005).
    doi:10.1063/1.2131065

  169. Nematic liquid crystals at rough and fluctuating interfaces
    J. Elgeti, F. Schmid, Eur. Phys. J. E 18, 407 (2005).
    doi:10.1140/epje/e2005-00051-8

  170. Fluctuations and defects in lamellar stacks of amphiphilic bilayers
    C. Loison, M. Mareschal, F. Schmid, Comp. Phys. Comm. 169, 99 (2005).
    doi:10.1016/j.cpc.2005.03.023

  171. Monte Carlo simulations of liquid crystals near rough walls
    D. Cheung, F. Schmid, J. Chem. Phys. 122, 074902 (2005).
    doi:10.1063/1.1844495

  172. Molecular recognition in a lattice model: An enumeration study
    T. Bogner, A. Degenhard, F. Schmid, Phys. Rev. Lett. 93, 268108 (2005).
    doi:10.1103/PhysRevLett.93.268108

  173. Two-state migration of DNA in a structured Microchannel
    M. Streek, F. Schmid, T. T. Duong, D. Anselmetti, A. Ros, Phys. Rev. E 71, 011905 (2005).
    doi:10.1103/PhysRevE.71.011905

  174. Incorporating fluctuations and dynamics in Self-Consistent Field theories for polymer blends
    M. Müller, F. Schmid, in Advances in Polymer Science 185, pp. 1-85 (Springer Verlag, Berlin, 2005).
    doi:10.1007/b136794

  175. Polymer adsorption onto random planar surfaces: Interplay of polymer and surface correlations
    A.A. Polotsky, F. Schmid, A. Degenhard, J. Chem. Phys. 121, 4853 (2004).
    doi:10.1063/1.1778137

  176. Formation and structure of the microemulsion phase in ternary AB + A + B polymeric emulsions
    D. Düchs, F. Schmid, J. Chem. Phys. 121, 2798 (2004).
    doi:10.1063/1.1768152

  177. Pores in bilayer membranes of amphiphilic molecules: Coarse-grained Molecular Dynamics simulations compared with simple mesoscopic models
    C. Loison, M. Mareschal, F. Schmid, J. Chem. Phys. 121, 1890 (2004).
    doi:10.1063/1.1752884

  178. A density functional theory study of the confined soft ellipsoid fluid
    D. Cheung, F. Schmid, J. Chem. Phys. 120, 9185 (2004).
    doi:10.1063/1.1703522

  179. Influence of sequence correlations on the adsorption of random copolymers onto homogeneous planar surfaces
    A.A. Polotsky, F. Schmid, A. Degenhard, J. Chem. Phys. 120, 6246 (2004).
    doi:10.1063/1.1647045

  180. A simple computer model for liquid lipid bilayers
    O. Lenz, F. Schmid, J. Mol. Liquids 117, 147 (2005).
    doi:10.1016/j.molliq.2004.08.008

  181. Mechanisms of DNA separation in entropic trap arrays: A Brownian Dynamics simulation
    M. Streek, F. Schmid, T. T. Duong, A. Ros, J. Biotechnology 112, 79 (2004).
    doi:10.1016/j.jbiotec.2004.04.021

  182. Amphiphiles at interfaces: Simulation of structure and phase behavior
    F. Schmid, D. Düchs, O. Lenz, C. Loison, in ``Computational Soft Matter: From Synthetic Polymers to Proteins'', Lecture Notes, NIC-Series Vol. 23, 323 (2004).

  183. Fluctuations in polymer blends
    D. Düchs, F. Schmid, NIC-Series Vol. 20, 343 (2004).

  184. Simulation of nematic-isotropic phase coexistence in liquid crystals under shear
    G. Germano, F. Schmid, NIC-Series Vol. 20, 311 (2004).

  185. Size dependent free solution DNA electrophoresis in structured microfluidic systems
    T. T. Duong, G. Kim, R. Ros, M. Streek, F. Schmid, J. Brugger, A. Ros, D. Anselmetti, Microelectronic Engineering, 67, 905 (2003).
    doi:10.1016/S0167-9317(03)00153-9

  186. Gel-free electrophoresis of lambda- and T2-DNA in structured microfluidic devices
    T. T. Duong, M. Streek, F. Schmid, A. Ros, D. Anselmetti, Schmid, Proceedings of μ-TAS 2003 1, 749-752 (2003).

  187. Fluctuation effects in ternary AB+A+B polymeric emulsions
    Dominik Düchs, Venkat Ganesan, Glenn H. Fredrickson, Friederike Schmid, Macromolecules, 36, 9237 (2003).
    doi:10.1021/ma030201y

  188. Thermal fluctuations in a lamellar phase of a binary amphiphile-solvent mixture: a molecular dynamics study
    Claire Loison, Michel Mareschal, Kurt Kremer, Friederike Schmid, J. Chem. Phys. 119, 13138 (2003).
    doi:10.1063/1.1626634

  189. Local structure in nematic and isotropic liquid crystals
    Nguyen Hoang Phuong, Friederike Schmid, J. Chem. Phys. 119, 1214 (2003).
    doi:10.1063/1.1577322

  190. Density functional for anisotropic fluids
    G. Cinacchi, F. Schmid, J. Physics: Cond. Matter, 14, 12223 (2002).
    doi:10.1088/0953-8984/14/46/323

  191. Simulations of liquid crystals: bulk structure and interfacial properties
    N. Akino, G. Germano, N. H. Phuong, F. Schmid, M. P. Allen, NIC-Series Vol. 9, 335 (2002).
    doi:10.1063/1.1481375

  192. Surface anchoring on layers of grafted liquid-crystalline chain molecules: A computer simulation
    H. Lange, F. Schmid, J. Chem. Phys. 117, 362 (2002).
    doi:10.1063/1.1481375

  193. Spatial order in liquid crystals: Computer simulations of systems of ellipsoids
    F. Schmid, Nguyen H. Phuong, in ``Morphology of Condensed Matter: Physics and Geometry of Spatially Complex Systems'', p. 172, Lecture Notes in Physics, K. Mecke and D. Stoyan eds., Springer Verlag (2002).
    doi:10.1007/3-540-45782-8_7

  194. An anchoring transition at surfaces with grafted liquid-crystalline chain molecules
    H. Lange, F. Schmid, Eur. Phys. J. E 7, 175 (2002).
    doi:doi.org/10.1140/epje/i200101098

  195. Wetting of a symmetrical binary fluid on a wall
    N. Wilding, F. Schmid, Computer Physics Communication 147, 149 (2002).
    doi: 10.1103/PhysRevE.63.031201

  196. Surface anchoring on liquid crystalline polymer brushes
    H. Lange, F. Schmid, Computer Physics Communication 147, 276 (2002).
    doi:10.1016/S0010-4655(02)00260-6

  197. The direct correlation function in nematic liquid crystals from computer simulation
    N. H. Phuong, G. Germano, F. Schmid, Computer Physics Communication 147, 350 (2002).
    doi:10.1016/S0010-4655(02)00302-8

  198. Elastic constants from direct correlation functions in nematic liquid crystals: A computer simulation study
    N. H. Phuong, G. Germano, F. Schmid, J. Chem. Phys 115, 7227 (2001).
    doi:10.1063/1.1404388

  199. Critical phenomena at the surface of systems undergoing a bulk first order transition: Are they understood?
    K. Binder, F. F. Haas, and F. Schmid, "Computer Simulation Studies in Condensed Matter Physics" XIV, p. 85-96, Eds. D. P. Landau, S. P. Lewis, and H. B. Schüttler (Springer, Heidelberg, 2002).
    doi:10.1007/978-3-642-59406-9_13

  200. Phase behaviour of amphiphilic monolayers: Theory and simulation
    D. Düchs, F. Schmid, J. Phys.: Cond. Matter 13, 4853 (2001).
    doi:10.1088/0953-8984/13/21/313

  201. Molecular Dynamics study of the nematic-isotropic interface
    N. Akino, F. Schmid, M. P. Allen, Phys. Rev. E 63, 041706 (2001).
    doi:10.1103/PhysRevE.63.041706

  202. Computer simulations of self-assembled monolayers
    F. Schmid, C. Stadler, D. Düchs, J. Phys: Cond. Matter 13, 8653 (2001).
    doi:10.1088/0953-8984/13/38/308

  203. Wetting of a symmetrical binary fluid mixture on a wall
    F. Schmid, N. B. Wilding, Phys. Rev. E 63, 031201 (2001).
    doi:10.1016/S0010-4655(02)00234-5

  204. "Intrinsic" profiles and capillary waves at interfaces between coexisting phases in polymer blends
    K. Binder, M. Müller, F. Schmid, Adv. in Colloid and Interface Science 94, 237 (2001).
    doi:10.1016/S0001-8686(01)00064-1

  205. Surface tension of the isotropic-nematic interface
    A. J. McDonald, M. P. Allen, F. Schmid, Phys. Rev. E 63, 010701(R) (2001).
    doi:10.1103/PhysRevE.63.010701

  206. Surface induced disorder in body-centered cubic alloys
    F.F. Haas, F. Schmid, K. Binder, Phys. Rev. B. 61, 15077 (2000).
    doi:10.1103/PhysRevB.61.15077

  207. Order and disorder phenomena at surfaces of binary alloys
    F.F. Haas, F. Schmid, K. Binder, in ''Properties of Inorganic Solids 2'', 77, Kluwer Academic, New York (2000).
    doi:10.1007/978-1-4615-1205-9_7

  208. Systems involving surfactants
    F. Schmid, Chapter 13 of ``Computational methods in colloid and interface science'', p. 631, edt. M. Borowko, Marcel Dekker inc., 2000.
    In doi:10.1201/9780429115813

  209. Phase behavior of grafted chain molecules: Effect of head size and chain length
    C. Stadler, F. Schmid, J. Chem. Phys. 110, 9697 (1999).
    doi:10.1063/1.478934

  210. Short grafted chains: Monte Carlo simulations of a model for monolayers of amphiphiles
    C. Stadler, H. Lange, F. Schmid, Phys. Rev. E 59, 4248 (1999).
    doi:10.1103/PhysRevE.59.4248

  211. How simulations can clarify phase transitions of complex materials
    K. Binder, M. Müller, F. Schmid, Computing in Science and Engineering 1, Vol. 3, 10 (1999).

  212. Interfacial profiles between coexisting phases in thin films: Cahn Hilliard treatment versus capillary waves
    K. Binder, M. Müller, F. Schmid, A. Werner, J. Stat. Phys. 95, 1045 (1999).
    doi:10.1023/A:1004510702716

  213. Monte Carlo simulations of copolymers at homopolymer interfaces: Interfacial structure as a function of the copolymer density
    A. Werner, F. Schmid, M. Müller, J. Chem. Phys. 110, 5370 (1999).
    doi:10.1063/1.478432

  214. Intrinsic profiles and capillary waves at homopolymer interfaces: A Monte Carlo study
    A. Werner, F. Schmid, M. Müller, K. Binder, Phys. Rev. E 59, 728 (1999).
    doi:10.1103/PhysRevE.59.728

  215. Effect of long range forces on the interfacial profiles in thin binary polymer films
    A. Werner, M. Müller, F. Schmid, K. Binder, J. Chem. Phys. 110, 1221 (1999).
    doi:10.1063/1.478164

  216. Self-consistent field theories for complex fluids
    F. Schmid, Topical review, Journ. of Physics: Cond. Matt. 10, 8105 (1998).
    doi:10.1088/0953-8984/10/37/002

  217. Interfaces in immiscible polymer blends: A Monte Carlo simulation approach on the CRAY T3E.
    A. Werner, M.Müller, F.Schmid, K.Binder, in High Performance Computing in Science and Engineering, 176, E.Kramer and W. Jäger (Eds), Springer Verlag (1998).
    doi:10.1007/978-3-642-58600-2_19

  218. Monte Carlo simulations of interfaces in polymer blends
    M. Müller, F. Schmid, Annual Reviews in Computational Physics VI, pp. 59-127, D. Stauffer edt., World Scientific, Singapore (1999).
    doi:10.1142/9789812815569_0003

  219. Liquid-vapour phase behaviour of a symmetrical binary fluid mixture
    N.B. Wilding, F. Schmid, P. Nielaba, Phys. Rev. E 58, 2201 (1998).
    doi:10.1103/PhysRevE.58.2201

  220. Simulation of interfaces between coexisting phases in materials
    K. Binder, M. Müller, F. Schmid, A. Werner, Journal of Computer aided Materials Design 4, 137 (1998).
    doi:10.1023/A:1008631902826

  221. Theoretical modeling of Langmuir monolayers
    F. Schmid, C. Stadler, H. Lange, Colloids and Surfaces A 149, 301 (1999).
    doi:10.1016/S0927-7757(98)00315-X

  222. Interfaces between coexisting phases in polymer mixtures: What can we learn from Monte Carlo Simulations?
    K. Binder, M. Müller, F. Schmid and A. Werner, Macromolecular Symposia 139, 1, (1999).
    doi:10.1002/masy.19991390102

  223. Interfaces in partly compatible polymer mixtures: A Monte Carlo simulation approach
    K. Binder, M. Müller, F. Schmid, and A. Werner, Physica A 249, 293 (1998).
    doi:10.1016/S0378-4371(97)00477-9

  224. Was kann die Computersimulation für die Materialwissenschaft leisten?
    K. Binder, W. Kob, M. Müller, P. Nielaba, W. Paul, F. Schmid, in ``Forschungsmagazin der Johannes-Gutenberg Universität Mainz'' 13, 6 (1997).

  225. Anomalous size-dependence of interfacial profiles between coexisting phases of polymer mixtures in thin film geometry: A Monte-Carlo simulation
    A. Werner, F. Schmid, M. Müller, and K. Binder, J. Chem. Phys. 107, 8175 (1997).
    doi:10.1063/1.475118

  226. Monte Carlo simulation of Langmuir monolayer models
    F. Schmid, C. Stadler, H. Lange, Computer Simulations in Condensed Matter Physics X, p. 37, D. Landau, K.K. Mon, H.B. Schüttler eds., Springer, Heidelberg 1998.
    doi:10.1007/978-3-642-46851-3_4

  227. Influence of the head group size on the direction of tilt in Langmuir monolayers
    F. Schmid, H. Lange, J. Chem. Phys. 106, 3757 (1997).
    doi:10.1063/1.473426

  228. Stabilization of tilt order by chain flexibility in Langmuir monolayers
    F. Schmid, Phys. Rev. E. 55, 5774 (1997).
    doi:10.1103/PhysRevE.55.5774

  229. Simulation von Phasengrenzflächen in Polymermischungen
    F. Schmid, M. Müller, A. Werner, K. Binder, Freiberger Forschungshefte B 279, 201 (1996).

  230. Diblock copolymers at a homopolymer-homopolymer - interface: A Monte Carlo simulation
    A. Werner, F. Schmid, K. Binder, M. Müller, Macromolecules 29, 8241 (1996).
    doi:10.1021/ma960614h

  231. Grafted rods: A tilting phase transition
    F. Schmid, D. Johannsmann, A. Halperin, J. Physique II 6, 1331 (1996).
    doi:10.1051/jp2:1996134

  232. A Self consistent field approach to surfaces of compressible polymer blends
    F. Schmid, J. Chem. Phys. 104, 9191 (1996).
    doi:10.1063/1.471610

  233. Surface ordering and surface segregation in binary alloys
    F. Schmid, in "Stability of Materials", 173, NATO-ASI Series (1996).
    doi:10.1007/978-1-4613-0385-5_7

  234. Errors in Monte Carlo simulations using shift register random number generators
    F. Schmid, N.B. Wilding, Intn. Journ. Mod. Phys C 6, 781 (1995).
    doi:10.1142/S0129183195000642

  235. Quantitative comparison of self consistent field theories for polymers near interfaces with Monte Carlo simulations
    F. Schmid, M. Müller, Macromolecules 28, 8639 (1995).
    doi:10.1021/ma00129a024

  236. Effect of fluctuations on the wetting transition in amphiphilic systems
    F. Schmid, M. Schick, J. Chem. Phys. 102, 7197 (1995).
    doi:10.1063/1.469114

  237. Effect of capillary wave fluctuations on wetting transitions in balanced amphiphilic systems
    F. Schmid, M. Schick, Zeitschr. f. Physik B 97, 189 (1995).
    doi:10.1007/BF01307469

  238. Liquid phases of Langmuir monolayers
    F. Schmid, M. Schick, J. Chem. Phys. 102, 2080 (1995).
    doi:10.1063/1.468729

  239. Spinodal phase separation in complex fluids
    F. Schmid, R. Blossey, J. Physique II (France) 4, 1195 (1994).
    doi:10.1051/jp2:1994194

  240. Monte Carlo study of interfacial properties in an amphiphilic system
    F. Schmid, M. Schick, Phys. Rev. E 49, 494 (1994).
    doi:10.1103/PhysRevE.49.494

  241. Phase transitions of a confined complex fluid
    F. Schmid, M. Schick, Phys. Rev. E 48, 1882 (1993).
    doi:10.1103/PhysRevE.48.1882

  242. Surface order in body-centered cubic alloys
    F. Schmid, Zeitschr. f. Phys. B 91, 77 (1993).
    doi:10.1007/BF01316711

  243. Monte Carlo Simulations of body centered cubic alloys
    F. Schmid, K. Binder, in "Metallic Alloys: Theoretical and Experimental Perspectives", 261, NATO-ASI Series, (1993).
    doi:10.1007/978-94-011-1092-1_29

  244. Monte Carlo investigation of interface roughening in a bcc-based binary alloy
    F. Schmid, K. Binder, Phys. Rev. B 46, 13565 (1992).
    doi:10.1103/PhysRevB.46.13565

  245. Rough interfaces in a bcc-based binary alloy
    F. Schmid, K. Binder, Phys. Rev. B 46, 13553 (1992).
    doi:10.1103/PhysRevB.46.13553

  246. Modelling order-disorder and magnetic transitions in iron-aluminium alloys
    F. Schmid, K. Binder, J. Phys.: Cond. Matter 4, 3569 (1992).
    doi:10.1088/0953-8984/4/13/019

  247. Lattice-distortion-mediated local jumps of hydrogen in niobium from diffuse neutron scattering
    H. Dosch, F. Schmid, P. Wiethoff, J. Peisl, Phys. Rev. B 46, 55 (1992).
    doi:10.1103/PhysRevB.46.55